Commentary

Failure

I’m an old queen. Whatever you’re thinking that’s probably not it. In 2013 I competed in the annual Eugene SLUG Queen Competitionand won. I am Old Queen Professor Doctor Mildred Slugwak Dresselhaus[1], named in honor of the late great Queen of Carbon Nanonscience, Millie Dresselhaus[2]. It wasn’t my first time competing for the crown, you see, I tried in 2012 and I failed. We put up a valiant fight, bribing the old queens with the gift of SCIENCE! for the masses [3]. It was a close thing, but I was edged out by Queen Sadie Slimey Stitches and her Naughty Knitters. 

It’s not my defeat in 2012 that makes me cringe though. It’s what came after winning. SLUG Queens started out as a sort of kitschy joke, but sometime in the early aughts the queens upped the ante and started advocating for causes. It is now traditional for the Raining Queen [4] to hold a gala fundraiser for her chosen cause. I was the first (and so far only) Science Slug Queen and I was raising awareness and money for the SPICE program. For months I worked on beautiful posters, collecting donations, getting out word of mouth on social media, and planning a night full of fun science activities. The gala was lovely . . . and about 25 people came for a space designed to hold 200. Ouch! The only thing that save the event from taking a loss was the heroic MC work of Old Queen Bananita who cajoled and amused the few folks on hand to buy enough stuff from our auction to get us (barely) into the black.

I made lots of mistakes along the way to my very public face-plant. Just thinking about it makes my eyes go squinchy. I keep the lovely poster made by my friend and co-conspirator Pinky (aka Jen Weber) in my office as a reminder. Failure is never far away.

I am a motivational researcher. Understanding the impacts of failure is key to understanding all sorts of aspects of motivation (identity and self-efficacy being two big ones). I spend a lot of time proclaiming the value of failure in learning, but I’m gonna be straight with you, failing sucks. It’s no fun to take a risk and fall flat on your face. No one likes to feel incompetent or foolish, especially in front of witnesses. The desire to avoid this kind of embarrassment can lead to some pretty impressive avoidance strategies. Adolescents and youth in particular are keenly tuned in to the dangers of social embarrassment. Many pre-fossils like myself have any number of embarrassing stories we can trot out for amusement now that we are at a remove (and I do think being able to laugh at your own mistakes is a sign of maturity), but I bet most of us also have a few we do not care to share, even decades later (I know I do).

Science, by its very nature, is a process of failure. Failure is not merely an option in scientific inquiry, it’s a prerequisite to even the most humble success. Consider the scientific method:

Ask a question

(admit you don’t know something)

Investigate

(learn more, because you don’t know enough)

Hypothesize

(take a risk by making a guess)

Design

(try to figure out how to answer your question)

Test

(collect some data and hope it makes sense)

Analyze

(can you figure out what you did actually means?)

Share

(tell the world all the ways in which you were wrong, and if you are very lucky the one or few things you got kind of right)

Scientists become old friends with failure. More like frenemies who don not actually like each other and engage in a lot of one-upmanship. One of the ways scientist do this is by contextualizing failure and making room for it in the process. Scientists know they aren’t going to get everything right the first time, they build a learning curve into their experiments, reach out to experts for advice, and collaborate with people who have experience. They document their failures and try again, hopefully having learned something that will help with future attempts. 

The scientific community is actually experiencing a problem right now. There’s a heavy bias in the publishing of data only to report positive results. Negative results (aka failures) rarely make it into the literature which is resulting in duplication of effort and an incomplete picture of what is actually known. After all, if you’re trying an experiment, wouldn’t you like to know if someone else did it before and found it doesn’t work? Often, when learning new things there is value in repeating something that’s been done before, even if it doesn’t work. Just as often it’s just a big waste of your time. Why do that? But our fear of failure and collective bias toward success is creating a problem. 

Failure becomes particularly problematic for out-group members. If you read my Nerding While Female post, then you have heard at least a little of how women’s membership in male dominated identity groups such as sports fan, cultural geek, and science are often subject to heavy gatekeeping and policing. Any time an individual is not perceived as a natural member of a group this extra barrier to membership identity can be found. For in group members, failure is just a small set back. For outgroup members failure is yet another symbol of not belonging. Couple this with the fixed mindset that often manifests in out-group members seeking entry and stereotype threat (illustrated beautifully in this comic) and failure becomes a serious threat to integrating a science identity for anyone who does not fit the scientist stereotype.

There is hope though. There are ways to make failure into an ally.

First and foremost educators and mentors can help students contextualize failure. Often when students are first introduced to the scientific method they think the goal is the come up with the correct hypothesis and prove it. This can make science projects a crushing experience when they should be an exciting process of discovery. When teaching science fair projects through SPICE, we always emphasize that a hypothesis is just your best guess and that the point of the process is to learn something new. There is no “right” answer. Doing it right means being thoughtful, observant, and analytic. The most valuable thing any scientist can do is find and proudly share her mistakes and incorrect assumptions. Mature scientists spend far more time on the shortcomings of their work than on the successes [5]. Understanding what went wrong is so much more valuable than getting everything perfectly right the first time. 

Failure is only true failure if you didn’t learn anything. 

In SPICE we tell our girls that failure, is not only an option, but a prerequisite for any scientific endeavor. Perseverance, analysis, and a good sense of humor when it comes to your own mistakes are the most important skills for being a scientist. 

Use failure as a sharing opportunity. Whenever we carry out a complex of difficult experiment in SPICE I ask for volunteers who want to share their failures and what they learned from them. Hearing that others have flopped is a powerful learning experience. My favorite times are when students learn from the mistakes of others. Once at an engineering Saturday workshop a team shared how explained how they had tried something a little different with their structure that had not worked and another girl piped in, “I saw what they did and I thought it was really cool, but it wasn’t working. So I tried it with a different setup and it worked great. I would never have figured it out if I hadn’t seen their idea.” 

When you provide a space for sharing failure it helps others learn from your mistakes and creates a shared sense of what it means to be a learner who fails. Students who started out with hanging heads or frustrated glares are soon laughing at their peers stories and sharing their own face plants.

“I can tell you one, thing,” said one of the campers I interviewed. “I don’t know how to get that experiment to work, but I can tell you 5 ways it won’t!” And that is a beautiful thing.

***

[1] NOT former, darling. Once a Queen, ALWAYS a Queen. We’re all Old Queens here.

[2] Yes, I asked her permission before using the name and she was “tickled” by the idea.

[3] Bribery is traditional and I like to think I elevated it to a new level. We set up tables in the square and did free science activities will all the kids and families who attended.

[4] Nope, not a typo. Slugs love rain and it the Pacific Northwest after all.

[5] Though sometimes we can go overboard on the qualifications.

They didn’t even know they were doing science

Some of the best science educators I ever met were preschool teachers. Some of the most natural scientists I ever met, where a group of two year-olds. I learned more from those teachers and children about how to teach science than I did from my entire PhD program in education [1]. 

There’s a story I like to tell about how I was humbled by a group of toddlers. My son attended what my husband and I called the “hippy daycare.” This was a child development center attached to the University of Oregon where I am an employee, and at the time, my husband was a student. The daycare follows the Regio Emilia [2] philosophy of early childhood development.  What this means functionally is that the kids spend a lot of time working on long term projects, mostly art focused projects, based in children’s interests.  

The early upshot of this was lots and lots of brown paintings. It turns out, small children do not like to limit themselves to one color at a time on their brushes. I became very adept at discerning yellow-based browns from red-based browns from blue-based browns. One project I witnessed involved 8 crawling infants gleefully rummaging  through a full a three foot wide pile of semi-shredded paper. It made sense in context. 

One of the things that the teachers at my son’s school [3] would often lament was their lack of expertise in science. I heartily disagree. This is the story that I think best encapsulates just how good they were at science.

Image Credit: B. Todd

Image Credit: B. Todd


One morning as I was dropping off my son in the wobbler room (1 ½-2 ½ year-olds) another one of the children, I’ll call him Ned, brought a leave to one of the teachers. It had fallen off of a sort of succulent plant that had thick waxy leaves. He wanted to know if it could be put back on.

Now if Ned had brought the leaf to me, I would have kindly said that, “No, the leaf can’t go back on. But the plant will be OK. Let’s put this in the trash.” 

The teacher did not say that. The teacher said, “I don’t know, what do you think?”

In a matter of moments, Ned had the children circled up around the plant brainstorming. Kids being dropped off rapidly abandoned their parents to join the session. I stood back and watched, intrigued. Each child offered a suggestion. After several had been offered the teacher had the children assess each suggestion. My son, who was at the time obsessed with construction and a plastic toy hammer he used on EVERYTHING, helpfully suggested, “AMMA! AMMA!”

“What do we think about hammering the leaf on?”

After a brief scrunch faced moment, he agreed that maybe hammering the tree would not be a good idea and joined the growing contingent in favor of taping the leave back on to the tree. 

Mind you, these kids were mostly under two years old and didn’t have many words, but they had some sign language and a long history together. The communication was surprisingly effective and the teachers never gave answers, always putting it back to the kids to problem solve and decide on a course of action.

Over the course of three days the children tried multiple types of tape, glue, and putty. They rummaged through the classroom supplies to find potential adhesives, worked together to get the leaf back on the plant stalk, and then waited to observe each attempt. Checking in multiple times daily to see if there was any progress. Near the end of the third day they circled up again. Out of tape and glue, the teachers asked the children what they wanted to do next. Ned took the leaf, stuck it into the soil in the pot and returned to the group. “What do we think about putting the leaf in the dirt?”  With a collective shrug and a few words the group agreed that it was, “good enough.”

Let me break this down, science style. 

1)   Generate a question – How can we put the leaf back on the plant?

2)   Investigate – The children examined the leaf, the plant, and the resources at hand.

3)   Hypothesize – Attaching the leaf back to the plant might permit the leaf to continue to live and grow.

4)   Plan – The children brains-stormed techniques and selected a set of approaches to test (glue and tape)

5)   Test – They tried each approach in succession and collected data

6)   Analyze – They looked at the results, determined that their approaches had failed and developed an alternative.

7)   Share – Teachers and students took photographs, made drawings, and added the story to their journey books.

A perfect science project, complete with failure and revision! Instead of simply being told the leaf was dead, they designed, tested, and confirmed that there was no available method for reattaching it to the plant. I really can’t think of a more elegant experiment or learning device.

The teachers led this activity with care and thought. Instead of rushing in and giving answers, they gave their students tools and prompts to help them through a largely self-guided inquiry. The kids weren’t left wondering why the leaf had to be discarded. They proved empirically that there was no method at hand for saving it. This experiment had ripple effects in the room. The children took more care with the plants, but also were pragmatic when leaves occasionally fell off. Eventually, after the leaf shriveled up in the pot, they took it out and discarded it. They knew from observation, however, that the plant would be OK if it lost a few leaves. 

I love this story. Over the years he was there, my sons teachers often asked me to visit the room to present science activities. I was happy to do it when time permitted. After all, I had access to microscopes and a few other cool instruments they didn’t have in the classroom. When I would visit, they would often lament that they weren’t more competent at leading science and every time, I laughed and assured them, they were setting their students up perfectly to be little scientists. 

After working with my son and his classmates during his preschool years, I’ve come to the conclusion that very young children are natural scientists. They ask questions about everything and rarely accept easy answers. They want to see, smell, touch, and hear WHY the world works the way it does and are only satisfied when they can try things themselves [4]. They are surprisingly, delightfully, skeptical when it comes to natural phenomena. As they learn new things they start making connections to their lives and seek out more information. Though it is true, sometimes they just want to run around and shriek a lot.

There was a dark side to this discovery for me. We know from research, and I’ve seen it myself, by the time these children hit middle school, their attitudes toward science have typically changed dramatically. While they all enjoy a good science show with fire and fizzy chemicals, very few of them enjoy science class or look forward to learning science. The interest drop in STEM at this age is dramatic and disturbing. Not just because we aren’t doing enough to foster a love of science in children, but because along the way, we are actively removingtheir natural joy and facility for scientific investigation. Thatis a sobering thought.

*****

[1] To be fair my grad program wasn’t tryingto teach us how to teach anything. They were making us into researchers, primarily quantitative researchers.

[2] You’ve probably heard of Waldorf and Montessori, well Regio Emilia is the Luke Hemsworth of early childhood ed. Talented and handsome, but less famous than Chris and Liam.

[3] We never really called it “daycare” because it didn’t seem like just place to house kids during the day. It was a place of learning.

[4] Not great when you’re trying to keep them from touching hot/sharp things, but excellent for learning.

Growing the Gap

There’s plenty of evidence that k-5 children (boys and girls, white and minority) have a pretty strong interest in science and are confident in their science abilities. We also know that STEM careers tend to be dominated by white men. So what is happening in the tween to adult years that results in the gender STEM gap? Well, a lot. 

Ignoring the simplistic, and thoroughly debunked answer that girls just don’t like science, there isn’t just one answer to this question. There are many answers that when stacked together paint a rich portrait. While not all explanations apply to all girls, the layers and layers of small barriers and messages form what J Clark Blickenstaff calls the gender filter

There are so many layers to this filter that I cannot possibly cover them in one blog post (or many, many blog posts). I’m an identity researcher, so I’m going to focus on explanations around identity. Also, because I think that understanding these elements is the key to correcting the gender gap in STEM.

Even though young children express enthusiasm for science and confidence in their science abilities, gendered inculturation into science and math is already at play as early as second grade in the form of implicit bias and gendered associations [1]. Very young children have already absorbed stereotypes about who is more suited to careers in math (and science) and who is “better” at math and science. These early perceptions of suitability play a pivotal role in later decisions.

As I’ve mentioned before, middle school is a very important time for identity development. Kids begin trying out different identities, processing feedback about their identity performances, and making important choices about who they are, and perhaps more importantly, who they are not or cannot be. This is also a crucial time for establishing gender identity, testing out sexuality, and finding social niches. I think most people who’ve been through middle school can remember this time pretty vividly. The pressure to find a place of belonging and avoid social shaming is powerful. When you add to the mix gendered notions of science as being the native realm of (white, cis, hetero, upper middle class) boys - and unflattering stereotypes of scientists as asocial, obsessive, geniuses - a female science identity becomes quite fraught. For most girls, trying on a science identity is a risky proposition that could undermine a more socially desirable identity as feminine and sociable. 

11-Gap sm.png

In their hugely influential studies of tween and teen youth, science identity ninjas Archer and Dewitt [2] have described the very circumscribed path toward a female science identity. Basically, girls have two choices in successfully integrating a science identity, neither of which is reasonably attainable by most girls. The first example is the well-rounded, socially adept girl. This is the girl who can do it all, sports, academics, social-status. You know this girl. She’s the one you desperately wanted to hate in high school, but you couldn’t, because she was just so nice and awesome, and her hair was super shiny and always looked great - but like she didn’t even try, she just rolled out of bed fabulous without any makeup and could spike a volley ball like some sort of Grecian goddess. She could be a cheerleader and captain of the brain bowl team. She built houses for poor people in Honduras, where she spoke flawless Spanish. Dammit Alicia O’Brien [3], you haunt me.

So yeah, that’s not an option for any but the .01% of Alicia O’Briens in the world. The other option Archer and Dewitt observed where what is known in the UK as “blue-stocking” scientists. These are girls who strongly identify with academic pursuits and have largely desexualized themselves. They typically have parents who take a strong hand in the daughters education and discourage the normal socializing and gender goofing off of early adolescence. You know this girl to, she’s serious, hard-working,  intellectually intimidating, but not socially threatening. She’s above the game. This identity is also not terribly accessible (or desirable) for many girls. 

Imagine, you are a middle school aged girl. You’ve already absorbed the implicit bias that science and math are the natural realm of boys. You probably think (though you may not admit it) that being good at math and science requires an innate talent (see fixed mindsets). Even if you are pretty good at math and science your performance in those areas doesn’t impact your interest in them as much as it would for boys, because most careers in math and science are not really “thinkable” for a girl. So, when you’re choosing extracurricular activities, you’re less likely to choose math and science options that conflict with your feminine (or non-binary) gender identity. Even if you’re an academically high performing student, you view math and science instrumentally, as hurdles to climb to get where you want, rather than interesting journeys to take just for the wonder. Over time these small biases and little choices feed into growing identity gaps and a future in science seems less and less like “you” as other things (art, sports, social ties) become more integrated into your sense of self.

In this way, the narrative around choices about science and identity get muddled and feel less like a narrative of oppression and exclusion and more like a natural arc. These choices away from science and toward something else were simply the journey to being who you always were. Sure, you liked science as a kid and you enjoy a good podcast about developing a missions to Mars, but science is not a part of who you are

I like to tell a story about when my son was very little. Between the ages of 2-4 my son had a plan, and it was the best plan ever. When he grew up he would spend his days as a construction worker using massive equipment to tear down roads and buildings and then build other roads and buildings. By night he would be a janitor, cleaning up all the grossest messes of the world and vacuuming up all the spiders. In between he would sneak in princess time, art, and legos. He had all the accoutrement for these vocations. Big dump truck and excavator with real moving arms. Check. Janitor cart with feather duster, spray bottle, and working mini vacuum. Check. Art supplies and Legos. Check. Closet full of mermaid princess costumes. Check.

In the mind of a three year old, there are no limitations. You can literally be anything you want and you can be as many things as you want. Researchers, parents, and teachers, spend a lot of time and effort talking about adolescence, what it is, what it means, what’s happening. For me, the biggest discovery of adolescence - I mean, big flashing 50 foot tall sign type of discovery - is scarcity. This is the time when you realize, “Oh wait, I can’t be a cowboy, ballerina, astronaut, president. I’ve got to narrow this sh!t WAAAY down.” The world suddenly becomes very big and very small all at once. There’s an infinite array of choices, but you’ve got to pick and you’ve got to pick while walking a tight rope balancing 5 plates with a weasel crawling around in your hoodie. So just like hiring managers pouring through massive piles of resumes, you start looking for quick and easy disqualifiers [2]. There’s a typo on this resume. Trash. This person doesn’t have a degree. Trash. There are very few girls scientists. Trash. Science is for boys. Trash. I’d have to give up a lot to be a girl scientist. Trash.

So . . . is there nothing we can do? Is this just a viscous cycle of inescapable socialization? Not at all! There are some really great rays of hope. After all, lots of girls (not half, but still a good chunk) do choose science and there things we can do to help more girls view science as “thinkable.”

Leaping the Gender STEM Chasm  Image Credit: P. Kim

Leaping the Gender STEM Chasm

Image Credit: P. Kim

Bucking the Trend

Among girls and women who identity with scientists, two common themes emerge in their narratives of how they came to love science: mentors and peers. 

Opening Up the World of Science

Every girl I have ever spoken to who identifies with science talks about a teacher [3]. They talk about teachers who brought so much enthusiasm and passion to science that their love for the subject was infectious. They talk about projects and activities that encourage creativity and centered on investigation. They describe instruction that enables students to see themselves as agentic beings in the world of science.

“He made science feel so fun it didn't really feel like the science that we

used to do.”

“Well, she's just fun! I mean, she won't let you off if you don't finish your homework, [but] she just finds a way to make everything interesting.”

In their excellent 2014 paper, Carlone, Scott & Lowder juxtapose two different classrooms. In the classroom of 4th grade teacher Ms. Wolfe the idea of what makes someone good at science is broadened to include creativity, supporting the learning of peers, and asking interesting questions. In Ms. Wolfe’s classroom the “celebrated figure” of the scientist was constructed much more inclusively than the fuzzy haired old white dude of stereotypes. Children had many venues to develop their own style and approach to building a science identity. None of which were centered on getting the “right answer.” A diverse array of children in Ms. Wolfe’s class identified as being good scientists. Each had his/her own way of being a good scientist that was personal and included their own intellectual and social strengths. Enthusiasm for the subject was high among her students.

Two years later, the same students were in the classroom of Mr. Campbell which was structured around the traditional ideas of completing worksheets and getting right answers. Knowledge in this classroom was passed from the teacher to the students and questions were for clarification, not creativity or curiosity. Gendered ideas about science were prevalent in the classroom. It was clear that Mr. Campbell, while thought of as a nice and “fun” teacher, was rooted in traditional ideas of what it takes to be a good scientist (compliant, perfect, organized). There was a notable dip in enthusiasm for science in Mr. Campbells class and a much narrower field of students who identified (and were identified by peers) as scientists.

How teachers approach the idea of the scientists and the role of students in their science education can make a difference in students identity development. I’ve said it before, and I’ll keep saying it long after everyone just rolls their eyes and says, “I know, mom/Dr. Todd, I know!” Welcoming all children into the world of science and supporting the adoption of science identities is as, if not more important, than the content we teach them. 

Peers: Push and Pull

Another theme I’ve observed in the literature and from my own research is the presence of science-engaged female peers. Girls who unabashedly enjoy science and pursue it with vigor have peers and friends who share their interest. Having a group of friends to “nerd out” with and do experiments with is a way to overcome the gender STEM thinkability gap. The girls with the most positive outlooks about their future as scientists, in my research, are the ones who talk about doing science experiments at home with friends. They talk about taking apart electronics picked up at thrift stores, weekends spent wrecking the kitchen doing chemical reactions, and doing school science projects together.

Outside-of-school time with peers also appears as a theme in developing science identities. Tan and colleagues (2013) document an instance of one girls journey from a disengaged science student, to a fully-fledged science identity through an after school environmental science club. Kay, found a voice, and the respect of peers through the informal science club where she used her social skills and drive to become a science leader.

 Peers can just as easily pull girls away from science. Tan and colleagues also found that jumping into more difficult science classes had social costs for minority girls who found themselves as one of the only non-white students in their classrooms and also due to scheduling conflicts, no longer shared classes or lunch time with their longtime friends. The pull to remain with fellow minority peers who understood their history and personality was strong for girls in this position. Many girls may feel a loss of connection with friends who do not share their interest in science, while boys will be much more likely to find relatable peers in the science milieu.

Concluding Thoughts

For girls who find passionate, inviting science teachers and peers who share their interest, science can be a wonderful playground of discovery and integrate into an enduring identity. Of course, finding those teachers and peers is the trick no, isn't it?

In my own research, however, I have found that just one teacher who welcomes girls into the world of science can make a huge difference, especially when girls can maintain contact with that teacher. Some do this by volunteering in their old classrooms and through clubs and special projects. 

Parents can also play a role in helping girls build science engaged peer groups. More than a few girls I’ve known have “tricked” their friends into enjoying science with the help of parents. Families who have the time and resources to invite friends along to science outings (nature hikes, museum visits) can help foster interest in their daughters peers. Some parents go above and beyond, providing girls with fun weekend science activities, often bringing in elements of creativity that appeal science and non-science oriented children. I’ve known parents to weave arts and crafts and baking into lessons on chemical reactions, reflected light, and botany. It can be a tall order, especially for parents who themselves feel intimidated by science, but even an occasional small activity in which girls are free to explore the scientific world, outside of school, among friends, can be a powerful bonding experience.

~~~~~

[1] Yes, Alicia is real. No that’s not her name. Yes, she really was just the nicest person ever.

[2] Yes, I like metaphors. It’s not technically mixing metaphors if just serially stack them on top of one another.

[3] In a sad corollary, I have also heard plenty of tales from girls about how a teacher has damaged her connection to science or a particular discipline.

~~~~~

Archer, L., et al. (2013). "'Not girly, not sexy, not glamorous': primary school girls' and parents' constructions of science aspirations." Pedagogy, Culture & Society 21(1): 171-194.

Blickenstaff, J. C. (2005). "Women and science careers: Leaky pipeline or gender filter?" Gender and Education 17(4): 369-386.

Carlone, H. B., et al. (2014). "Becoming (less) scientific: A longitudinal study of students’ identity work from elementary to middle school science." Journal of Research in Science Teaching 51(7): 836-869.

Cvencek, D., et al. (2011). "Math-gender stereotypes in elementary school children." Child Development 82(3): 766-779.

Todd, B. (2015). Little Scientists: Identity, Self-Efficacy, and Attitudes Toward Science in a Girls' Science Camp. Educational Methodology, Policy, and Leadership. Eugene, OR, University of Oregon. PhD: 313.

Nerding While Female

I am a dork. A dweeb. A nerd. A geek. Have been since it back in the day when those were insults. I’ve got nerd cred a mile wide and Everest deep. I learned Basic on an IBM clone in the 80s. I owned pirated VHS copies of Explorers, War Games, Short Circuit, and The Last Starfighter. I listened to They Might Be Giants. I’m an old school platformer with mad skills and I can tell you where all the hidden passages, power ups and secret endings are in Super Mario Brothers from the first NES game through Mario 64 and beyond (Including the Lost Levels -  released as Super Mario Bros 2 in Japan). I demolish my comic book reading, old school D&D playing husband at online tests of Geek knowledge. 

Nerd and geek culture have historically been closely associated with an interest in science. Not every nerd is a science person and not every science person is a nerd, but there’s a pretty long history between the two. For girls and women like me, nerd-dom and science share a pretty key problem – gatekeeping and credential checking.

I’m a science educator, I run science outreach programs. While most of my time is spent on higher level matters, I get plenty of time on the ground directly doing science with kids. One of the things I do each year is recruiting for our programs. This involves visiting local schools to give quick flashy demonstrations, teach a little science, and plug our programs. When I go on trips, I make sure to play the part. I wear the lab coat, the goggles, and gloves. I also wear t-shirts from shows and games I enjoy and know kids will recognize.  Many kids compliment my choices. Well, girls do. Boys are another matter.

Uncannily, and without fail, at the end of my demo, or even sometimes during, a male student between the ages of 11-14 will interrogate my knowledge of the icon I’m wearing. 

“Do you reallyplay Fallout?”

“Which one is Fineas and which one is Ferb?”

“Do you know who all of those Nicktoons on your shirt actually are?”

Yes. Ferb has the green hair. Rug rats, Angry Beavers, Hey Arnold, CatDog, Aah! Real Monsters, and Rockos Modern Life – all of which, I might add were on the air before you were born.

One kid actually grilled me on all the Easter eggs in the intro sequence to Gravity Falls. I played my Gravity Falls ringtone for him.

They’re not really challenging my knowledge of a particular property, they’re challenging my right to be in “their” sphere. The fact that girls and women make up a huge component (and often the majority) of fandoms does not dissuade these little gatekeepers from demanding my credentials at the door.

Image Credit: B Todd

Image Credit: B Todd

Now you could argue that their suspicion comes from my adult status, rather than my gender, but it doesn’t. I know because male instructors who wear similar apparel just get compliments or asked about their favorite parts of property x [1]. 

It’s kind of cute, at first, watching them try to play it cool when I unleash the tsunami of useless pop culture information I’ve collected over 4 decades, but after a while it gets really tiring. After a while, it stops being cute. It’s just another collection of microaggressions

There’s a sad and sour absurdism to the fact that our culture anoints even preadolescent males to police the identities of women old enough to be their mothers or even grandmothers. Women experience this in many spheres, pop culture and science, but also sports and technology.

If a man wears the jersey of a sports team, he is presumed to be a fan. If a woman wears it, she is presumed to be on the bandwagon with a male in her life who is a fan and will be subjected to inquiries about whether she is a “real” fan. Women will also be held to higher standards for being able to claim fandom. 

The same goes for science. Boys and men who express an interest in science or actively pursue science education and careers are presumed to have 1) genuine interest, 2) be competent unless they demonstrate otherwise, and 3) are accepted in their choices. Women who express interest in science or actively pursue science education and careers are more likely to 1) have their interest questioned, 2) be presumed to be less competent, and 3) be treated warily by in group members

Women in STEM disciplines report being asked to prove their competence and credentials over and over again. In a truly comic instance, transgendered neuroscientist Ben Barres reported overhearing some of his colleagues commenting that his work had always been “better than his sisters.” Professor Barres, who transitioned only a few years earlier had no sister in neuroscience.

The problem of “the poser” is hardly new. It is often cloaked in a search for “authenticity” to make sure that casual other don’t “pollute” a pristine space for those who genuinely “belong,” but really it’s plain old exclusion. This becomes rather obvious when you look at who is challenged and who is not.

I’m a grown woman with a PhD and a lot of experience dealing with exclusion both personally and from research and teaching perspective and I can confirm, it’s exhausting and demoralizing. It’s also difficult to challenge in the moment. Sure, I can prove my bona fides, but I shouldn’t have to. What else should I say, though? “Hey tiny male human, it’s cute that you think you get to decide if I’m nerd enough, but you’re just being a tool of patriarchy.” I’m not sure that would be effective. Sometimes I turn it back on them. “Yes, I do like such and such. What do you like about it? What is your favorite character?” Honestly, they usually don’t catch what I’ve done, but I’m an older woman in a position of authority. I remember being younger and feeling like I had to prove myself. Let’s face it, as women, we often we dohave to prove ourselves. Opportunities and evaluations may depend on men approving of us and the deck is stacked. Even when we’re not dealing with an potential authority figure, we’re conditioned from an early age to be compliant and polite. When we push back we’re “abrasive” and “pushy” or for girls, the dreaded “bossy.”

I’ve spent a lot of time thinking about how to help girls push back, and there are some tactics, but 1) it’s not reasonable to expect adolescents to suavely push back in situations that fluster grown adults 2) as I’ve mentioned before the notion that “fixing the girls” as a solution is just wrong

What we really need is to be collectively working on the gatekeepers, pushing  back against double standards of competence and belonging, training our sons to interrogate their own notions of what “belongs” to boys and boys alone, and recognizing that very little in life is a zero sum game. Including more girls and women in the world of STEM is not taking something away from the boys and men, it’s giving everyone more. More creativity, more collaboration, allies.

 ~~~~~~~

So how does one deal with microagression theater? There’s no perfect answer, but here are some tips I’ve found helpful.

One tactic I advocate for is using L'esprit de l'escalier. This is French term, meaning the “wit of the staircase.” It’s when you think of a snappy comeback right after it’s too late. The thing is, the rude, stupid, and exclusionary things people do and say follow themes. Start paying attention and you’ll notice these themes. Spend a little time thinking of how you want to handle them the next time and give it a try. See what happens, refine you technique. Carry note cards (Nothing cools some ones jets like waiting for you to pull a notecard out of your bag and then reading it to them). Read or simply state your prepared response, and the, this part is important, stop talking. Resist the urge to qualify, or joke, or lighten the verbal punch. Just let it sit in the silence. It can be quite therapeutic to watch the verbal salad that starts spewing out of people when you calmly and flatly call out their rudeness and dump it in their laps.

I like the notecard bit because it really drives home how unoriginal the aggression is. If there’s a prepared crard, it’s clearly not new to you.

 Here are some sample texts you can use: 

“That was very rude.

“That is inappropriate.”

“Are you really interested in my answer? Because it sounds like you just want me to agree with you/shut up/accept your ludicrous premise.”

“Why do you ask?”

“I’m sorry, could you repeat that . . . Nope, still didn’t get it. I thought you said, X, but that would be very rude. What did you say?”

“Yeah, I know.”

“Awkward”

“I’m not going to answer that.”

“I’m so sorry. This must be very embarrassing for you.”

“I’ll give you a moment to get your foot out of your mouth.”

~~~~~

[1] Poetically, the only shirt I wear that I don’t actually have a personal connection with is a kawaii-style figure called Pusheen. I had no idea who Pusheen was when I bought the shirt, but I thought it looked cute and I needed a third shirt for the buy 2 get one free deal. No one has ever questioned my right to wear Pusheen, as kawaii is traditionally the realm of women and girls.

A Brief History of Thinking about Girls and Science

In 2013 girls swept the Google science fair. Their projects were the results of hundreds of hours of work, of creativity, of failures and persistence, and of passion. Even my cynical heart melts and I have to fight tearing up every time I see the picture of them holding their Lego trophies. The news of their victory went around the world. Millions shared their photos and stories online. Teachers showed it to students, parents showed it to sons and daughters. Advocates used it to illustrate how far girls have come. Some trolls no doubt used in their attempts to show that boys are the real victims of all this affirmative action and girls positivity. It meant a lot of different things to a lot of people. But it was not the first time a group of girls demolished their male peers in test of scientific prowess. Not by a long shot.

Image Credit: P. Kim

Image Credit: P. Kim

1845 – Boston 

There were no movie theaters, nor were there scantron sheets for scoring tests. A popular way to demonstrate student knowledge was to hold public examinations. Literally, people would put on their nice clothes and head to the local, school, church, community hall, to watch a bunch of secondary students be grilled by teachers and experts in their relative fields.

 On this night, the hall was packed. Typically, these examinations were dominated by males and focused on the classics and maybe some mathematics. This year, the examinations would also feature natural philosophy and participants would be from schools serving boys and girls (most secondary schooling at this point was private, gender segregated and paid for by parents). Public examinations were how schools showed parents and other stakeholders the value of the education provided. Preparation for the examinations was rigorous and noted for creating a sense of terror in students.

 I imagine people packed in, wearing their scratchy Sunday clothes with stiff collars (and no fabric softener). They there proceeded to watch girls demolish the boys, answering twice as many questions correctly with the girls from the best single-education girls school Bowdoin, outperforming the males of the best boys school, Brimmer, across the board, not just in science education. This of course, did not stop district officials from rating the boys school as the best overall Boston secondary school.

 Of course, in reality, there was no cinema-style show down. Boys and girls, while examined publicly, were examined at their own schools, likely on different days. Girls superior performance in natural philosophy (typically focused in the areas of geography – which had a much broader scope than we think of today -  and astronomy) were not all that surprising to people of the time. That is because, in the early days of the United States, natural philosophy was considered a logical fit for the fairer sex, while males were considered to be superior in the classics (languages and literature). 

Ladies were all up in the natural philosophy house.

Ladies were all up in the natural philosophy house.

 In her excellent research monograph, The Science Education of American Girls: A Historical Perspective, Kim Tolley presents mountains of evidence in the form of school records, advertisements, period essays, and personal diaries about the state of girls secondary education in 19thcentury America and beyond. What she finds is that for much of American history, girls schools were more likely to teach natural philosophy (what we now call the sciences) than boys schools. Natural philosophy was believed to be in alignment with girls destinies to be wives and mothers. Women employed as tutors and governesses were expected to be knowledgeable about geography, geology, and surveying. Girls (well, wealthy girls) and their mentors were encouraged to explore outdoors, observe, and experiment with the natural world. 

 It’s only with the rise of industrialization, and the increased realization that the future of the nation lay in innovation, that the “natural” order in which women studied science and men were masters of the classics began to turn on its head. In the post-civil war era a shift in thinking about science began that would eventually lead to the professionalization, and masculinization, of the sciences in America (and around much of the world). 

 Renaissance and enlightenment science was the realm of the well-heeled who didn’t need to work for a living (though working classes had been innovating from the dawn of time – they just didn’t get credit for their creations). Just look at the list. Newton, Darwin, Boyle, Cavendish. All independently wealthy and able to fund their own research. Science was not considered a vocation (if it had been, not so many gentleman would have tried their hand at it). In fact science was often presented as parlor tricks and entertainment. The most famous science magician in history being American’s own Ben Franklin [1]. And while gentleman (and women) scientists introduced many innovations and discoveries, it wasn’t until the industrial revolution began that the economic and social potential of science as a career path was realized. 

 Industrialization produced incredible wealth through mass manufacturing, improvements in transportation, and communication, and in public health. Where there’s money to be made, there’s power to be had. In patriarchal society, where there’s power to be had, you better bet that men are going to be there to take it. So it was that increasingly, science began to be thought of as a realm of men and not women. Women were increasingly pushed out of the sciences, though in truth, they never really left, continuing to innovate by discovering pulsarspioneering theory behind nuclear fissionmaking massive strides in public health, and discovering that genetics determine sex. They just didn’t get the accolades or credit.

 As educational priorities shifted and women were shunted away from the sciences, gaps in performance in these areas grew. For some time, this was not considered anything to be concerned about. It was just a natural upshot of women’s biological inferiority at mathematical and scientific subjects. In the 60s and 70s as the space race was going full steam and more and more women entered the workforce, educators, policy makers, and feminists were starting to notice these gendered gaps in STEM fields and looking for ways to fix the problem. A problem society had created be shunting women to the margins of math and science. Thus began the modern debate over gender disparities in STEM and a series of efforts to correct the problem.

 I like to think of the attempts to address gender disparities in terms of 4 waves [2,3]– 

  1.             Fix the Girls

  2.             Fix the Curriculum and Teachers

  3.             Fix the Culture

  4.             Identities for Science

Early attempts at narrowing gaps focused on finding and remediating deficiencies in girls, providing extra attention to teach girls STEM disciplines and bringing up test scores. AKA, lets fix those girls!It didn’t take long before researchers [4] began to realize, that gaps were not due to deficiencies in girls, but rather with curriculum and teaching. Text books were jam-packed with gendered examples (boys as doctors, girls as nurses), sports analogies for processes in the natural world, and heavily gender biased teaching. Moves were made to make curriculum more gender inclusive and relatable. Only so much could be done with text books though. Science and mathematics at the secondary level were overwhelmingly taught by men, and girls were largely overlooked and provided with low expectations in the science and mathematics classrooms. Oh wait, that’s still going on today.Yay!

In the 80s and 90s, researchers and policy makers focused on revising curriculum and looking at ways to shift pedagogy to be more female inclusive. It worked, to point. Girls did start improving on standardized tests, and outstripped boys in grades and number of science courses taken. Some achievement gaps do remain. Even well into the 21stcentury girls are less likely to take physics, engineering, or computer science courses, and teachers in most science subjects remain overwhelmingly male. Strides had been made, but girls still weren’t choosing science.

In the 90s feminist academics and women in STEM began pointing to the culture of science for evidence as to why girls were not choosing science. Despite closing achievement gaps, STEM remained an unattractive option for girls. Stereotypes about science and women’s and girls real experiences with STEM education and careers painted a rather unflattering view of life as a STEM professional. Researchers pointed to the masculine construction of the idea of science that permeates culture (competitive, isolated, requiring effortless brilliance), the lack of relatable mentors, and sexual harassment in the classroom and workplace. It’s hard to say much has changed on this front, even as recently as 2016, sexual harassment scandalshave plagued academic disciplines in science. Though the fact that there are scandals and reporting on them is a sign that women’s complaints are being heard.

While researchers, educators, policy makers, and STEM professionals continue to address STEM curriculum, teaching, and culture, a new wave of researchers are looking at STEM identities as both an explanation for the continued gender gap and a possible solution. Research has found a substantial “thinkability” gap around most STEM careers for girls and women [5]. Most girls simply aren’t thinking about careers in STEM, and if they do, the option doesn’t seem very appealing. The image of science as masculine has been carefully cultivated by our society for over 100 years. Improving test scores isn’t going to change such core conceptions of who does and doesn’t belong with a few new text books and a photo of a couple of girls holding Lego trophies.

Improving the quality of STEM education has been a priority for educators, researchers, and policy makers for years. Most states have adopted the Next Generation Science Standards (or similar standards) with the intent of making STEM curriculum more modern and inquiry-based. There is a huge body of research behind the standards and how inquiry-based learning provides students with a better grasp of key STEM concepts. What is missing from these standards is guidance on how to teach the “soft” side of STEM. No, I don’t me soft like girls, “oh, girls are soft,” I mean soft like social. Even the best curriculum can’t prevent gendered bias from playing out in the classroom. Educators need clear guidance with practical training on how to make the STEM classroom more inclusive and responsive. This is one place where the world of formal education can learn from informal programs like SPICE, where motivational theories have been operationalized and put in to practice for years with positive, measurable results.

~~~~~

 [1] OK, so Franklin wasn’t really a gentleman scientists, but rather a Yankee entrepreneur, but still. He was a great one for parlor tricks.

 [2] Brotman, J. S. and F. M. Moore (2008). "Girls and science: A review of four themes in the science education literature." Journal of Research in Science Teaching 45(9): 971-1002.

[3] Blickenstaff, J. C. (2005). "Women and science careers: Leaky pipeline or gender filter?" Gender and Education 17(4): 369-386.

[4] Lets be honest, maleresearcher began to realize this. Women already knew they were as smart as men.

[5] Archer, L., et al. (2012). "“Balancing acts”: Elementary school girls’ negotiations of femininity, achievement, and science." Science Education 80(1): 967-989.

            

 

Hey, It’s (another) Blog!

I love living in the internet age. I’m that part of the tail end of Gen X that was still young enough during the rise of the internet to feel perfectly at home online, but also old enough to remember things like card catalogs, World Book, and grandparents who refused to get an answering machine. I remember using a 20 page manual to figure out how to program the VCR to record shows that were on after my bed time. Now I roll my eyes when my parents talk about all the shows jamming up their DVRs. Come on folks! It’s 2018, you can stream anything. Cut the cord!

 I love that when a random question occurs to me I can ask my phone for the answer. Like, “Why does washing cause natural fabrics to shrink?” Questions like these become salient as I sit here typing in a pair of too-tight freshly washed pants. Gah, pants! Always trying to thwart my creativity!

 Arguments that once would rage between friends and family members can be settled with a simple YouTube search. It turns out my husband and I were both wrong. It wasn’t Pluto or a comet that caused a cataclysm in 1997 earth leading to the rise of a techno magic post apocalypse. 


Man, I miss full minute long, narrated cartoon introductions. No, not really. After all, they live forever online, and 70s and 80s cartoons were truly terrible.

 I remember when being a geek was still a bad thing, and got to gleefully watch as my nerdy cohorts rose to prominence among the elites of the technology and entertainment industries. Now I see my childhood icons plastered on artificially aged tee shirts worn by 5 year-olds whose parents are too young to actually remember the pop culture references in which they’ve decked their children. I can deploy my childhood memories as social capital with cool 20-something college students and their middle school-aged younger siblings. It’s . . . weird watching 14 year-olds rock out to my beloved (but admittedly vapid) 80s pop music. It strikes me with a feeling of both familiarity and alienation. Are they making fun of me? Why do they like this? They don’t know the references within or the context of the music, games, and shows they’re streaming endlessly on pocket devices. Does it matter if they do? And then there’s the meta angst of a highly privileged white woman expressing distress at temporal appropriation. I mean come on. It’s not like these kids are donning sugar skull make up and getting drunk on Cinco de Mayo. 

PSA Moment - Hey white kids, don’t culturally appropriate for “cool” costumes. Not cool - End PSA.

 OK, so I went down a bit of a rabbit hole there. The point is, a lot has changed since I was a 9 year old who aspired to be an evil mad scientist when she grew up. So much has changed. But you know what hasn’t changed? The gross underrepresentation of women [1] in science, technology, engineering and mathematics (STEM) disciplines. Here’s a nifty chart I stitched together from a bunch of different government reports. Basically, what it shows is that 1) women are underrepresented in most STEM disciplines and 2) the disparity grows the further up the career ladder you look.

Disparity Chart.png

It’s a chart! Women holding STEM degrees/positions as percentage of total (National

Science Board, 2014b, 2014c, 2014d; National Science Foundation, 2011a).

 What does this mean? It means that if I were 9 years old today, I wouldn’t be much more likely to become a man scientist than I was in 1986. Wait, did I just give away how old I am? Again? This is pretty depressing. The bit about women in science, not my age. I love being in my 40s. My store of giving-a-flying-flip has hit epic lows [2]. One thing I do give a flying-flip about is girls and women in science. I give a whole lot of flips about gender disparities in STEM. I spend that time before falling asleep thinking about it. I spend time playing games on my phone thinking about how I should be doing something about gender disparities in STEM instead of placing yet another tile trying to block that blue jerk out of my giant Carcassonne city. Heck, I wrote a 321 page dissertation about gender and STEM [3]. 

 You do not want to read my 321 page dissertation. Seriously, I can be honest with myself. No one who didn’t absolutely have to read that should. But, it’s possible, that after writing that 321 pages  . . . and a few more pages in the form of journal articles and reports, and spending 11 years actually doing science with girls, that I *might* have some things to say that people *might* find interesting.

Welcome to the Chicks Dig Science Blog, aka “The SLOG” or the place where Brandy rants about all things girls and science-y. 

 So, what is this blog about and who is it for? Excellent question. This is a blog for anyone interested in girls and gender diversity in science, informal science outreach, and/or motivational theories as they apply to science education. You know. Girls. Science. Motivation. YAY! So basically, parents, educators, and scientists interested in doing outreach, this is a blog for you. Also anyone who enjoys gratuitous snarky footnotes and deep 80s & 90s nerd references.

 This blog with also be featuring original art from actual girl scientists with whom I have worked over the years.

 Future posts will include practical tips for engaging girls (really anyone) with science, crash courses in motivational theories and how they apply to effective science experiences, interesting results from real research with real girls, and round ups of current issues in gender disparities in STEM. Posts will be presented in my native smart-alec voice, while including legitimate research and informed, responsible commentary. 

So stay tuned each Thursday for a new snippet of snark and substance in the world of girls and science.

 *******

 [1] and minorities and people with disabilities

 [2] For an epically profane breakdown of how this feels see this excellent essay by Mark Manson.

 [3] For the record, only 253 pages of that were actually about gender and STEM. The rest were title pages, and references, and appendices . . . about gender and STEM. GAH! Look. There were a LOT OF CHARTS AND TABLES. It’s not that long, really.

This Blog is Wrong

This is a blog about science and girls and girls & science. It’s about how to welcome girls into the world of science and foster an enduring love for exploring the natural world. It is a blog for parents and teachers and scientists and people who care about girls. This blog is wrong. 

Image credit: Pearl Kim

Image credit: Pearl Kim

In this blog you will learn a lot of things about girls and science. You will learn that I run a program for middle school aged girls. You will learn that this program is named SPICE. You will learn that SPICE is designed to foster affinities for science [1] and science education. You will learn about research I have conducted on SPICE. This research quantifies programs impacts and seeks to identify effective techniques for motivating girls to pursue science education and careers. This blog, this program, this research is wrong.

The blog is not wrong because what you just read sounds pretty boring. What all the mumbling about “affinities” and “motivation” really means is that I spend my summers encouraging girls to light things on fire, solve murder mysteries [2], and build pinball machines. Not boring at all. I also watch girls light things on fire. I ask them how they feel about lighting things on fire. I write papers about how girls feel about lighting things on fire.

SPICE Camper Demonstrating a Butane Bubble Fire (2015). Image Credit: A. Evensen

SPICE Camper Demonstrating a Butane Bubble Fire (2015). Image Credit: A. Evensen


Big surprise, they love it! Who doesn’t like lighting things on fire [3]?

This, is wrong.

No, I don’t mean I feel bad about running a program just for girls. I don’t. Not. At. All.

Nor do I regret encouraging them to light things on fire. . . . yet.

The reason I don’t feel bad about running a girls only program (or the fire) and the reason that this blog, and my research, and my program are wrong are exactly the same reason. 

There is no secret to getting girls to like science. Seriously. Girls already like science (as do boys and children everywhere). Until they don’t. There’s a big fat ol’ body of research showing that elementary school girls really like science and are confident in their science abilities. Until they’re not. 

Gendered ideas about math and science emerge at shockingly young ages, but don’t really start to bear nasty fruit until middle school. Early adolescence is the time when kids start running away from science like a plague. Girls run particularly fast. Interest and confidence in science ability begins a steady and uninterrupted dive in middle school. There is a lot of research (including my own) on why this happens and this blog will explore this research in future articles, but not right now. Right now I’m explaining why this blog is wrong. Remember this is a blog about getting girls motivated to do science. Something they are pretty much hard wired to enjoy from a very early age. So why the gender STEM gap?

Gendered achievement gaps in math and science have all but disappeared, but gaps in pursuit of science education and careers have not. The natural sciences remain heavily gendered and the gaps grow wider the higher up the science education and careers ladder you look.

Researchers, educators, and parents tend to talk about these gaps in terms of demographics. Numerous reports on women, minorities and persons with disabilities in STEM are produced each year by government agencies, professional organizations, and educational groups. 

This is wrong.

No, I don’t mean the data is wrong. The numbers are consistent and verifiable. 

What is wrong is the entire way the discussion is framed. There isn’t a problem with women or girls in science. The problem is with the culture of science. The problem is with the culture in general. The problem is with social messages that constantly tell girls (and most people who are not white males) that science is not the right place for them.

There are messages that say you must be effortlessly brilliant to be a scientist. 

This is wrong. Science takes creativity, and persistence, and hard work to master. Just like anything else worth mastering.

There are messages that say scientists are highly competitive and work in isolation on abstract projects that have no relation to real lives.

This is wrong. In practice, science is highly collaborative and generally only gets funded if it has potential to be useful.

There are messages that tell girls that they aren’t as naturally talented at science as boys.

This is wrong. Gender and sex-based differences in math and science ability have been thoroughly debunked.

There are messages that tell girls and women they will not be welcome in the world of science

This is wrong . . . but also true.

Female scientists receive less recognition for their accomplishments, have trouble finding peers and mentors they relate to, and have to struggle to walk the impossible line between gendered behavior expectations and science culture. The social construction of what it means to be a scientist and the cultural construction of acceptable ways to be a woman are directly at odds. The iconic Draw a Scientist Test continues to produce the same results today, even after decades of gains in girls math and science achievement. When asked to draw a picture of a scientist children (and adults) produce remarkably consistent images – fuzzy haired, maniacal, white men with beakers full of chemicals. 

Image Credit: B. Todd (2018)

Image Credit: B. Todd (2018)

Not exactly a relatable role model for aspiring young scientists, particularly girls trying to navigate what it means to be feminine in a culture that disproportionately values maleness and whiteness [4].

Imagine you are a 13 year old girl, deciding how to fill your one elective class spot for the term. You love science. You could take the new robotics class your school is offering. It sounds fun. Who wouldn’t want to build robots? But you know that you will be one of, if not the only girl in the class. You know from past experience that you are less likely to be called on by the teacher, less likely to be acknowledge for your accomplishments. Your ideas will probably be ignored by male group members who will then later absently propose the same thing and take credit for it. You know you will be giving up the opportunity to take a class with plenty of other girls, where you’ll be recognized and welcomed. You will be missing out on sharing something else fun with your friends. 

What is the rational decision? Take a class that’s likely to frustrate and alienate you or turn your attentions to something rewarding, something that aligns with you identity and need for belonging? 

Digging into the sources of gender (and other) disparities in STEM disciplines, reveals that that the entire ecosystem is polluted and the only things that could reasonably be considered “right” are the women and girls who opt out of science. 

Given the circumstances, girls and women are making healthy decisions in staying away from STEM education and careers. Of course, we also know, that they are passing on careers with higher income and greater prestige than those typically more welcoming to women. Not only that, but society is missing out on the creativity and innovation that comes with a diverse workforce, particularly in the STEM fields, where the economic and quality of life benefits for all have been clearly identified.

Why do we need science summer camps and after school programs for girls? It’s not because there is anything wrong with girls. Girls are fine. Girls are great. What is missing is the messaging and the opportunity that boys receive every day. The sense of belonging in science, recognition, access to relatable peers, and the implicit assumption of competence that are bestowed on (mostly white) boys is an incredible motivational leg up. 

I’ve heard many parents lament that they cannot find a program like ours for their sons. For the sake of diplomacy I refrain from shouting, “Every day is SPICE camp for your son!” What I do say is, “I think my (white) son has lots of opportunities to connect with science, even without SPICE camp [5].” 

What we really need are camps for everyone who is not underrepresented in STEM. We need camps for parents, and teachers, and little white boys, and people who make movies and TV shows, and talking head pundits to teach them how to include everyone in sharing and loving science. But I don’t have the budget or the patience for that. So I’ve got a program for girls and a blog. They are wrong. But they are what we have got.

And fire. We need more fire. 

*******

[1] I use science and STEM (science technology engineering and mathematics) interchangeably in this post. 

[2] The murders are fake. The fire is real [6].

[3] OK, some people have a very healthy and reasonable fear of fire. My apologies for being glib if you are one of those people.

[4] Wow that’s a really diplomatic way of saying we live in a white-male-supremacist patriarchy. I really need to work on the heteronormative aspect as well. I’m getting there! This blog will definitely address intersectionality. Eventually! 

[5] Ha-ha! Successful deployment of my over privileged male yuppy larvae offspring to combat the patriarchy! 

[6] No girls have been burned in the course of making this blog, but I may have lost a few arm hairs [7].

[7] Footnote within a footnote. I’m SO META!

What is this SPICE thing you keep talking about?

This is a blog about girls and science and what can be done to better support girls in science. Posts will vary between informational, practical, and theoretical discussions. Hopefully these posts will all be at least somewhat entertaining and more than somewhat useful/insightful. In a lot of posts I have/will reference the SPICE program. So it seemed worthwhile to spend a little time providing some context for what I’m talking about. 

What does SPICE stand for? Well, honestly, we came up with the acronym [1] and made words to fit . . . so nothing? But if you want to be technical it’s the Science Program to Inspire Creativity and Enthusiasm. Which is a huge mouthful, so just call it SPICE.

So what is SPICE? At its core, SPICE is a university-based program that provides science summer camps for middle-aged girls. This is nothing ground breaking. Lots of other higher ed institutions, professional organizations, and not profits provide STEM outreach targeted at underrepresented groups. These types of interventions run the gamut, but typically, they focus on a particular discipline and try to 1) increase awareness of this discipline as an area of potential study and careers, and 2) introduce participants knowledge in the discipline area. Some of the programs provide multiple points of contact with participants, but most are fairly off and on. 

Here’s where SPICE is different. 

Structurally, SPICE is fairly unique among STEM outreach programs. SPICE offers three cohort based thematic camps. What this means functionally, is that girls join the program the summer following 5th grade to attend the Discovery camp. They return the next summer for the Forensic Investigating Camp. The final summer is Maker Camp. So the program remains in contact with girls for a three year period. Many graduates return to volunteer with the program as Junior Minions [2]. Descriptions of the general content of each camp can be found below.

The biggest difference between SPICE and other programs, however, is not the content but what goes on “under the hood.” SPICE is a generalist program, curriculum shifts over time with the interests of campers, instructors, and the director [3]. What remains the same, year to year, is the instructor training and program guidelines. As I’ve noted in other posts, achievement is not the reason girls and women are not persisting in STEM. The big causes are rooted in lack of access to STEM experiences that develop the psychosocial building blocks for STEM motivation: identity, interest, self-efficacy, expectancy value, attitudes, and mindsets.  SPICE is designed to fill that gap by providing girls hands on STEM activities presented in a fashion that supports motivational development. 

Instructors are introduced to basic motivational theories and provided guidance on how to practically implement science in a way that fosters identity formation, self-efficacy, and interests. The SPICE model has been refined over the course of a decade and provides instructors with concrete rules for how to provide high quality science experiences. Below, you can see a logic model of the program design.

Logic Model2.jpg

 Crazy, I know, but researchers, particularly program evaluators, LOVE logic models. They go Gaga for logic models. In the table below, you can see actual information provided to instructors on how to lead science activities to maximize motivation. Note these are concrete, observable, measurable actions. 

3_Table 1 SPICE Model.png

Which brings us to the next point. Most STEM outreach is pretty haphazard. For example:

  • Professor Smith invites the children in his own kids classroom to come for a lab tour. 

  • Young faculty trying to beef up their resumes and have something to write in the “broader impacts” sections of their research proposals host school day off workshops. 

  • Parents and scout leaders invite students from the local student American Chemical Society group to present a workshop to their troop. 

 The types and quantities of these activities vary greatly, but they tend to have one thing in common. No one actually evaluates them. Typically, the only programs that receive any evaluation attention are those with large program grants with accountability to a sponsor (which is to say, very few). Many of the better funded programs are targeted to high school school students and have large college readiness components. It’s these college prep aspects that are often the focus of the research. Measures of motivational impact tend to be limited to a few pre post questions about the participants interest in a career in the particular discipline of focus.

 The really frustrating thing about all of this is that the vast majority of outreach, which accounts for countless hours and resources go largely, if not completely unexamined. Most fizzle after a few years, or even a few sessions [4].

Our goal with the SPICE program has been to make something enduring, effective, and measurable. The program has been in operation since 2008. Since 2013 [5], the I've been measuring campers motivation for science using, surveys, observations, focus group interviews, and in depth individual interviews. This research has focused primarily on:

  • Collecting and analyzing evidence of how that program is (or isn’t) working to support girls in building identities as future scientists.

  •  Learning from girls how they need to be supported in science.

What I find, generally, is a pretty profound gap in what girls think of as “real” science and the science they are learning in school. I’ve also found that SPICE does have a measurable impact on girls motivational profile (I call it affinity) for science. 

Let me clarify, I do research on girls motivation for science, but I don’t think how girls form science identities and interests is any different than that of boys. In fact, I’ve spent a good deal of time compiling evidence that the notion of a “girls” way of doing science is bunk. Girls have lots of different ways of doing and relating to science (I’ll get into this more in later posts). I’d bet dollars to donuts, that the types of science identities I’ve identified in girls are also present in boys. The part where gender becomes relevant is how these nascent science identities play out differently socially between boys and girls.

There are a lot of moving parts that go into a program like SPICE and I’ll cover some of these in more detail in later posts. For now, I’ll summarize the program with the following bullet points

  • SPICE practices are based in motivational theories that have been operationalized into clear guidance for how to foster a love of science in participants

  • SPICE is committed to researching and evaluating program impacts

  • SPICE targets middle school aged girls, as early adolescence is a key time in motivational (particularly identity) development

Camp Descriptions

SPICE consists of three signature camps which run in two session in each summer.

Discovery Camp(rising 6th and 7th graders)

Campers spend two weeks running (sometimes literally) from one activity to the next doing all sorts of crazy, fun, hands on lessons . . . and amassing sweet-sweet data. Campers are given their own lab notebook to decorate and doodle, and document. The camp culminates in a final Amazing Science Race where the girls have to use what they’ve learned through their time at SPICE to complete challenges and win fuzzy prizes. They think they’re just having fun, but really, their learning good experimental skills and data collection techniques.

Forensic Investigation Camp(rising 7th and 8th graders)

If Discovery Camp is about data collection, Forensic Investigation Camp is about data analysis. Campers learn a host of forensic investigation techniques from identifying mystery substances, to interrogating witnesses, to processing archeological sites. They learn not just how to carry out tests, but how to assemble data from multiple sources to put together a compelling, fact-bases story of what happened before they arrive on the scene.

Maker Camp (rising 8th & 9th graders)

Formerly Pinball Camp, Maker camp introduces fundamental principles of design, engineering, and logic using programmable Arduino microcontrollers. Girls carry out a number of projects that employ creativity, scientific design, and computer code to achieve a goal. Campers are introduced to circuits and learn how to use power sources, resistors, transistors, diodes, motors, servos, and LEDs to create games and objects that delight. Particular emphasis is placed on making computer science and engineering, two areas in which girls and women are the most underrepresented, accessible and relatable to campers lived experiences.

~~~~~~

[1] We tried a whole bunch of other acronyms out in a truly mind bending series of emails that shall forever remain buried three folders deep on an old hard drive. Suffice it to say, I’m really glad our name is SPICE not SPANK, SPUNKY, SPINK, or SPAM.

[2] I want it to be known that I used the term “minion” to describe my henchpersons long before Despicable Me.

[3] This is based on a vast store of anecdotal evidence. The fun thing about documenting how many outreach efforts fizzle is that part of the reason they fizzle is lack of documentation. So you have to take my word for this one [4].

[4] Tautology! Gotta love it!  

[5] There small attempts to evaluate the program from the very start, but they consisted mostly of “customer satisfaction” style questionnaires that were used to evaluate which activities campers liked. It wasn’t until 2013 that we got serious about the research.