What is this SPICE thing you keep talking about?

This is a blog about girls and science and what can be done to better support girls in science. Posts will vary between informational, practical, and theoretical discussions. Hopefully these posts will all be at least somewhat entertaining and more than somewhat useful/insightful. In a lot of posts I have/will reference the SPICE program. So it seemed worthwhile to spend a little time providing some context for what I’m talking about. 

What does SPICE stand for? Well, honestly, we came up with the acronym [1] and made words to fit . . . so nothing? But if you want to be technical it’s the Science Program to Inspire Creativity and Enthusiasm. Which is a huge mouthful, so just call it SPICE.

So what is SPICE? At its core, SPICE is a university-based program that provides science summer camps for middle-aged girls. This is nothing ground breaking. Lots of other higher ed institutions, professional organizations, and not profits provide STEM outreach targeted at underrepresented groups. These types of interventions run the gamut, but typically, they focus on a particular discipline and try to 1) increase awareness of this discipline as an area of potential study and careers, and 2) introduce participants knowledge in the discipline area. Some of the programs provide multiple points of contact with participants, but most are fairly off and on. 

Here’s where SPICE is different. 

Structurally, SPICE is fairly unique among STEM outreach programs. SPICE offers three cohort based thematic camps. What this means functionally, is that girls join the program the summer following 5th grade to attend the Discovery camp. They return the next summer for the Forensic Investigating Camp. The final summer is Maker Camp. So the program remains in contact with girls for a three year period. Many graduates return to volunteer with the program as Junior Minions [2]. Descriptions of the general content of each camp can be found below.

The biggest difference between SPICE and other programs, however, is not the content but what goes on “under the hood.” SPICE is a generalist program, curriculum shifts over time with the interests of campers, instructors, and the director [3]. What remains the same, year to year, is the instructor training and program guidelines. As I’ve noted in other posts, achievement is not the reason girls and women are not persisting in STEM. The big causes are rooted in lack of access to STEM experiences that develop the psychosocial building blocks for STEM motivation: identity, interest, self-efficacy, expectancy value, attitudes, and mindsets.  SPICE is designed to fill that gap by providing girls hands on STEM activities presented in a fashion that supports motivational development. 

Instructors are introduced to basic motivational theories and provided guidance on how to practically implement science in a way that fosters identity formation, self-efficacy, and interests. The SPICE model has been refined over the course of a decade and provides instructors with concrete rules for how to provide high quality science experiences. Below, you can see a logic model of the program design.

Logic Model2.jpg

 Crazy, I know, but researchers, particularly program evaluators, LOVE logic models. They go Gaga for logic models. In the table below, you can see actual information provided to instructors on how to lead science activities to maximize motivation. Note these are concrete, observable, measurable actions. 

3_Table 1 SPICE Model.png

Which brings us to the next point. Most STEM outreach is pretty haphazard. For example:

  • Professor Smith invites the children in his own kids classroom to come for a lab tour. 

  • Young faculty trying to beef up their resumes and have something to write in the “broader impacts” sections of their research proposals host school day off workshops. 

  • Parents and scout leaders invite students from the local student American Chemical Society group to present a workshop to their troop. 

 The types and quantities of these activities vary greatly, but they tend to have one thing in common. No one actually evaluates them. Typically, the only programs that receive any evaluation attention are those with large program grants with accountability to a sponsor (which is to say, very few). Many of the better funded programs are targeted to high school school students and have large college readiness components. It’s these college prep aspects that are often the focus of the research. Measures of motivational impact tend to be limited to a few pre post questions about the participants interest in a career in the particular discipline of focus.

 The really frustrating thing about all of this is that the vast majority of outreach, which accounts for countless hours and resources go largely, if not completely unexamined. Most fizzle after a few years, or even a few sessions [4].

Our goal with the SPICE program has been to make something enduring, effective, and measurable. The program has been in operation since 2008. Since 2013 [5], the I've been measuring campers motivation for science using, surveys, observations, focus group interviews, and in depth individual interviews. This research has focused primarily on:

  • Collecting and analyzing evidence of how that program is (or isn’t) working to support girls in building identities as future scientists.

  •  Learning from girls how they need to be supported in science.

What I find, generally, is a pretty profound gap in what girls think of as “real” science and the science they are learning in school. I’ve also found that SPICE does have a measurable impact on girls motivational profile (I call it affinity) for science. 

Let me clarify, I do research on girls motivation for science, but I don’t think how girls form science identities and interests is any different than that of boys. In fact, I’ve spent a good deal of time compiling evidence that the notion of a “girls” way of doing science is bunk. Girls have lots of different ways of doing and relating to science (I’ll get into this more in later posts). I’d bet dollars to donuts, that the types of science identities I’ve identified in girls are also present in boys. The part where gender becomes relevant is how these nascent science identities play out differently socially between boys and girls.

There are a lot of moving parts that go into a program like SPICE and I’ll cover some of these in more detail in later posts. For now, I’ll summarize the program with the following bullet points

  • SPICE practices are based in motivational theories that have been operationalized into clear guidance for how to foster a love of science in participants

  • SPICE is committed to researching and evaluating program impacts

  • SPICE targets middle school aged girls, as early adolescence is a key time in motivational (particularly identity) development

Camp Descriptions

SPICE consists of three signature camps which run in two session in each summer.

Discovery Camp(rising 6th and 7th graders)

Campers spend two weeks running (sometimes literally) from one activity to the next doing all sorts of crazy, fun, hands on lessons . . . and amassing sweet-sweet data. Campers are given their own lab notebook to decorate and doodle, and document. The camp culminates in a final Amazing Science Race where the girls have to use what they’ve learned through their time at SPICE to complete challenges and win fuzzy prizes. They think they’re just having fun, but really, their learning good experimental skills and data collection techniques.

Forensic Investigation Camp(rising 7th and 8th graders)

If Discovery Camp is about data collection, Forensic Investigation Camp is about data analysis. Campers learn a host of forensic investigation techniques from identifying mystery substances, to interrogating witnesses, to processing archeological sites. They learn not just how to carry out tests, but how to assemble data from multiple sources to put together a compelling, fact-bases story of what happened before they arrive on the scene.

Maker Camp (rising 8th & 9th graders)

Formerly Pinball Camp, Maker camp introduces fundamental principles of design, engineering, and logic using programmable Arduino microcontrollers. Girls carry out a number of projects that employ creativity, scientific design, and computer code to achieve a goal. Campers are introduced to circuits and learn how to use power sources, resistors, transistors, diodes, motors, servos, and LEDs to create games and objects that delight. Particular emphasis is placed on making computer science and engineering, two areas in which girls and women are the most underrepresented, accessible and relatable to campers lived experiences.

~~~~~~

[1] We tried a whole bunch of other acronyms out in a truly mind bending series of emails that shall forever remain buried three folders deep on an old hard drive. Suffice it to say, I’m really glad our name is SPICE not SPANK, SPUNKY, SPINK, or SPAM.

[2] I want it to be known that I used the term “minion” to describe my henchpersons long before Despicable Me.

[3] This is based on a vast store of anecdotal evidence. The fun thing about documenting how many outreach efforts fizzle is that part of the reason they fizzle is lack of documentation. So you have to take my word for this one [4].

[4] Tautology! Gotta love it!  

[5] There small attempts to evaluate the program from the very start, but they consisted mostly of “customer satisfaction” style questionnaires that were used to evaluate which activities campers liked. It wasn’t until 2013 that we got serious about the research. 

Motivation: It’s not what you think

Motivation is a huge industry in America [1]. Companies pay thousands of dollars for speakers, trainings, and motivational materials for their employees. There are countless apps and gadgets designed to help people accomplish their goals. The “Self-Help” section of any book store is stacked with volume after volume of books designed to unlock your inner potential. Some of these products are based in actual nuanced research, most combine snippets of useful information packaged in with a lot of less scientific advice, and some are just downright garbage.

Built into these products is the notion that all you need to succeed is to find just that one hack or gadget to motivate you. Nothing exemplifies this more to me than the motivational poster. We’ve all seen them. Big framed posters with high quality stock photos and short pithy text. 

It’s not the destination, it’s the journey.

There is no “I” in “Team.”

Dream [2]

They adorn the walls of offices and waiting rooms. They’re so ubiquitous that they’ve spawned an entire counter line of products that play off the trope so well that sometimes it’s hard to parse the sincere from the satirical.

I really enjoy Demotivators, those great spoofs of the motivational poster. They sneak up on you because they look exactly like regular motivational posters. Photos of sweeping vistas, one word concepts in enormous fonts, with a short sentence at the bottom. It’s typically the text at the bottom that lands the punch. My favorite, hands down goes like this:

“Motivation: If a pretty poster and a cute saying are all it takes to motivate you, you probably have a very easy job. The kind robots will be doing soon.” [3]

Here’s the thing about motivation. It’s not really about individuals, or at least not just about individuals. It’s about an entire ecosystem of interaction, experience, and feedback. The notion that individuals can turn their lives around if they just dig deep and find the right motivation is, from a psychosocial standpoint, laughably naïve. Also, it’s beside the point. It’s an old saw that the whole is greater than the sum of the parts, but it’s really true. Societies aren’t just the total of the individuals in them. Societies have their own lives, characters, and far reaching impacts. So many of the problems we experience (opioid epidemic, bias motivated violent attacks, pervasive sexual harassment) are social problems. Addressing systemic social problems at the individual level simply isn’t effective or appropriate. That is to say, just telling girls they should do more science is not going to yield any gains in closing the gender STEM gap.

Image Credit: B. Todd

Image Credit: B. Todd

Motivation is a huge area of study pursued by researchers in education, psychology, sociology, economics, and business, to name a few. It contains many, many subfields that compliment one another. Some researchers focus solely on interest development while others look at curiosity. Yes, those are different things, and let me tell you, both groups have OPINIONS about the difference between the two. Within the area of interest formation one researcher may be looking at brain MRIs while another is administering short surveys to hundreds of students, and a third spends months or even years interviewing model train enthusiasts. What I’m trying to say is that motivation is a big complex field that can’t be pinned down to any one simple hack. I also think it’s safe to say that most of us, aren’t focused on individuals. We use them as our subjects, but we’re not just looking at the actions and thoughts of individuals. We’re looking at social context that produces these actions and thoughts. We’re looking for how social contexts produce (or inhibit) motivation and how they shape the nature of motivation. Let’s take a case of one and look at it.

Like many, many people, I am frequently in a state of trying to lose weight and be healthier in my diet and exercise. I’ve had varying success at this. The healthiest time of my entire life was between 2011-2014. I lost about 30 pounds, took up running, and participated in several triathlons. Let me be very clear, I was that kid in elementary school who HATED gym class. I couldn’t run without having to stop and walk every 30 seconds and could be reduced to tears over the prospect of being asked to climb a rope. Suddenly in my mid 30s I turned into work out nerd. Then between 2014-2017 I gained back all the weight (plus more), got much spottier about my workouts, ate very poorly, and didn’t participate in any formal organized fitness events like fun runs or triathlons. 

So what was the difference between these two three year periods? I was the same person [3] with the same information and abilities during both of these times. What was different was my ecosystem. In the first period I worked in the same office with my best friend and we went to the gym together nearly every day at lunch. She taught me how to run without collapsing into a wheezing ball and I showed up in her office very day with my gym bag excited to spend time with my friend complaining about whatever stupid thing was annoying me. We took swim lessons and learned how to perform a proper crawl stroke and did our first sprint triathlon together. We encouraged and challenged each other and it was fun. 

Then my friend graduated and got a better job somewhere else. It was harder to get together and at the same time my workload skyrocketed. Without someone to be accountable to it was easier to prioritize work over fitness. Stress made eating sugary foods a lot more attractive, and slowly my health routine degraded into an unhealthy one.

And that’s it. I didn’t actually change anything important in my life during these two times. I still did all the same activates with my family and pursued the same hobbies during both time frames, but in one I had a work context that supported fitness and in the other I didn’t. Context is everything. 

I’m not saying that people can’t make meaningful changes in their lives, of course they can, but the answer isn’t “willpower” or “wanting it.” It’s about creating the social circumstances that support success and reinforce desired behaviors. When we start looking at big problems like underrepresentation in STEM, changing context becomes a lot more challenging than finding a running buddy (which can be surprisingly challenging). Providing opportunity and access to underrepresented groups or yes, even helping people lose weight, are social issues that need to be addressed in social contexts. Taking a nuanced view of motivation as an ecosystem in which the individual is just one component doesn’t really sell books, though [4]. 

How can parents who want to support their girls in science change the social context? Can they change the social context? How much power do girls and parents have to create a context that sets them up for STEM success? I have thoughts on this ;-) But for now, I think the most important take away message from this rambling rant is not to beat yourself up for failing to DO ALL THE THINGS. It’s pretty hard to just make yourself do stuff that you don’t normally do. It’s REALLY hard to make yourself feel like the kind of person who does that stuff, which is a pretty important part of actually doing stuff. And if you want the girls in your life to engage more with science, well, engage in science with them! Help create a context that supports doing science. If you want to get really meta, create a context that supports you in creating a context that supports science engagement. . . easy, right? Yeah, no. But I’ll talk about that in future posts.

*****

[1] According to this Market Research Blog Americans spend around $10 billion a year on “Personal Development.”

[2] Well, yeah. I mean, you’ve gotta sleep, so sure. Dream. Also. Respirate. Perspirate. Maybe even Perpetrate (for a good cause). But don’t Suffocate. That would be bad.

[3] https://despair.com/products/motivation?variant=2457303555

[4] Ignoring existential questions as to the ephemeral nature of person hood and identity.

[5] Says the lady who is writing a book about engaging girls with science! 

It’s Just a Theory Right? What Motivational Theories Have to Offer for Closing the Gender STEM gap

As an academic researcher one of the things I do is go to conferences and talk about my research. As a mixed methods researcher sometimes I’m presenting big fat tables full of numbers. Coefficients, effect sizes, p-values, fit indices, all that jazz. Other times I share the words of girls I’ve interviewed and stitch together their different narratives to present interesting pictures of how they construct ideas about science, scientists, and their place in the world of science. Sometimes I do both in the same presentation. This makes for a lot of variety in the way I share my work. But every time I present, regardless of the methods or the specifics I’m discussing on that particular day, the same thing happens. 

After my talk, a fresh faced young teacher (or researcher) will come up, thank me for my talk, tell me my program sounds amazing, and then ask THE QUESTION. I really hate THE QUESTION. “So,” they say, “what curriculum do you use at SPICE camp?” Then I run screaming from the room, gnashing my teeth, and rending my nice suit jacket. 

OK, I don’t really do that. Nor do I shout, “You clearly weren’t LISTENING!”  

Now you are wondering, what kind of educator is this woman? Isn’t the goal of teaching for people to learn things? Don’t you need curriculum [1] to learn things? Aren’t you teaching science?

Well yes, of course we have curriculum. If I were to describe it I think our curriculum is like disco lighting. Shiny, eclectic, and constantly shifting. Don’t get distracted by the moving shiny lights! You are here to DANCE! 

Image Credit: B. Todd

Image Credit: B. Todd

Many outreach programs are sponsored by professional societies or grants that have a learning outcome agenda. If the people footing the bill are the international society of women in engineering, then you better bet they want the participants to be learning about engineering, not plant biology. Curriculum is going to be the main focus of such a program. Which is great, but it’s only address a small slice of the problem. We don’t just have a problem with women in engineering, or computer science, or physics (though these are the most problematic areas with regards to women in STEM [1] ), we’ve got a blanket problem with women not choosing STEM at all.

Remember, gender disparities in STEM are not the result of ability or achievement differentials. They are the result of choices made by humans. Girls are learning the same curriculum as boys, but they aren’t choosing STEM, and when they do, they are disproportionately choosing to leave STEM. 

What makes the SPICE approach to science outreach different is the emphasis on implementation. The content is nowhere near as important as HOW it is delivered [2]. Many schools have adopted high quality science curriculum and spent a lot of time and money training teachers to use that curriculum. States have invested millions of dollars in curriculum and assessments. We now have Next Generation Science Standards, which on balance, I think are pretty good. And yet. Girls are still opting out of science. We still have a massive gender gap in STEM and no fancy curriculum will fix that. Remember, girls achieve in science just fine. What they don’t do is CHOOSE science.

Why don’t they choose science? Because science isn’t choosing them.

This is why I don’t like THE QUESTION. The question implies that if we just get the perfect curriculum suddenly all the doors will open up and we will have fixed this “girl problem” in STEM. As I’ve stated before in this blog. We don’t have a “girl problem” we have a STEM culture problem. 

Curriculum is incredibly important in how students learn, but it won’t fix the “soft” elements of inducting students into the culture and identity of STEM practitioner. When social messages, stereotypes, and classroom dynamics all signal STEM as the domain of a certain type of white (or Asian) male, all the good curriculum in the world will not make it more attractive to women. There is a reason women out number men in nursing nine to one. It’s not because nursing schools do a better job of teaching medicine to women than men, it’s because men do not see themselves as nurses. This is despite the fact that nursing can be a physically demanding job requiring an authoritative demeanor and high level of technical expertise, all characteristics typically associated with masculine professions. But that’s not how nursing is thought of in our culture. Nursing evokes images of caring and nurturing more traditionally associated with the feminine. Similarly, girls do not see themselves in most STEM careers which are typified as isolated, requiring exceptional intelligence, and lacking in connections to the human experience.

Research shows that, at all levels, girls have fewer encounters with science, have fewer hands on science opportunities, and are less likely to be recognized for scientific accomplishments. If we want girls to view science careers as “thinkable” we have to provide the same motivational reinforcements to them that boys receive as a matter of course. When parents ask me about how they can find experiences like the SPICE program for their sons I want to shout, “The whole world is SPICE for boys!”

This is where having a good understanding of motivational theory comes in. If we know what is missing from girls STEM experiences then what can we do to fill in that gap? What are the concrete actions that teaches and parents and girls can take to build enduring interest in STEM education and careers? This blog will go into these topics individually in more detail over the next few months, but for now, here is the shortlist of motivational theories I use in my work and research and some quick notes about the implications of each.

Self-Efficacy

Based in the work of Albert Bandura, whose Bobo Doll experiment is both entertaining and terrifying to parents everywhere, Self-Efficacy, stated simply is an individuals’ belief in her ability to successfully complete a task. Note the emphasis on belief in this definition. Competence is often associate with self-efficacy, but not always, and the relationship goes both ways, building competence can build self-efficacy and building self-efficacy has been shown to contribute to increased competence. Self-efficacy development is a complicated process that involved interplay between the individual, mentors and peers, and the environment. Suffice it to say, our culture and educational system falls short of supporting girls STEM self-efficacy in many ways.

Identity

Psychologist Erik Erikson developed a theory of psychosocial development that identified 8 stages of identity development spanning from infancy to death. Each of these stages is imagined as a conflict that must be successfully resolved within the individual. One key stage that researchers, parents, and teachers or interested in is Identity vs. Role confusion. This is the stage that overlaps with adolescence and relates to a lot of identity work that starts up around the middle school years. Successful identity integration requires a series of cyclical processes that involve trying on new identities, receiving feedback about the suitability of identities, and shifting identity expressions.

This process is most visible in teens who heavily associate identity with alignment to cultural icons like musicians, artists, and actors. Dress becomes an important means of expressing identity for this age group and they are particularly alert for criticism and messages disconfirming belonging to a particular group or identity. Navigating complex, ever looming gender identities is a major component of this phase and the need to find an appropriate and meaningful gender expression can often run contrary to the expressions of a STEM identity. Girls who feel they must choose between their gender and interest in STEM will feel enormous pressure to conform to gendered expectations.

Interest Formation

Interest development is another area necessary for adopting a STEM orientation to the world. That is, people generally need to be interested in something to spend much time working toward it. In my work and research, I use the Four Phase model of Interest development delineated by Hidi and Renninger. This model identifies ways in which people engage in their interest and how interest can be scaffolded to develop from simply noticing and passively observing a subject of interest to becoming an expert who is able to pose novel questions and sustain their interest through self-driving inquiry and engagement. 

Many people, and especially children, have a situational interest in science (everyone likes a good science demonstration with fire or big chemical reactions). The key to building enduring interest is supporting students in developing a deeper, self-sustaining, personal interest in STEM topics. 

Mindsets

Carol Dweck and colleagues noticed some interesting anomalies in their research with children. First, they found that some students relished challenges that were likely to result in failure, while others avoided them at all costs. They also noticed that girls who were otherwise quite willing to take risks, were more likely to adopt the avoidant approach to math and science challenges. From this research Dweck developed the theory of mindsets. In a nutshell, some people view their intelligence in a particular domain as fixed, not capable of changing. For these individuals, failure is a signal of lower intelligence, and something to be avoided, particularly by those who generally thing of themselves a bright. Other individuals view their intelligence as malleable and capable of change with practice, and yes, the occasional failure. These individuals have a growth mindset, and relish challenge as an opportunity to learn and . . . well, grow.

The crazy things about mindsets is that life, self-efficacy, they can be very specific.  One individual can have a patchwork of growth and fixed mindsets. Many girls, who are identified as gifted and are willing to take risks in say, English class, may avoid similar behavior in a math setting, where the cultur stereotypes identity the domain as the realm of men and something that requires an innate talent that some people simply do not have.

Dweck and her colleagues have identified a host of behaviors and approaches to teaching that can help foster a growth mindset and an equally large list of practices that undermine girls in math and science.

******

[1] STEM = Science Technology Engineering Mathematics

[2] Am I the only one who thinks the word curriculum is just a pretentious way of saying, “stuff you learn?” Yeah, I probably am.

 [3] Yes, of course the content is important! Trust me, I’m a total hard-ass, demanding that the content be legitimate science with clearly delineated facts, concepts, and learning outcomes. I just don’t particularly care what facts/concepts/learning outcomes they are! [4]

 [4] Of course I care what they are. But only a little.

What is science affinity?

A huge part of raising baby academics involves pounding and shaping them into tiny little boxes [1]. We call this process “grad school” and it involves a lot of being told just how wrong and misguided every idea you ever had was, is, and will continue to be. 

A semi-apt metaphor would goes as follows:

You arrive at a feast. A near infinite assortment of foods is displayed before you, each more appetizing than the last. Many kindly mentor-like figures stand around you smiling. They lead you around the table extolling the virtues of each food, but whenever you reach for an item, they begin shouting and waiving their arms madly. 

“YOU CAN ONLY HAVE ONE!” 

And then they begin ferociously detailing to you all the things about your chosen snack that totally suck, while fervently encouraging you to just go ahead and choose something already!

Peas don’t care about affinities. They just like hanging out in pods together.Image credit: B. Todd

Peas don’t care about affinities. They just like hanging out in pods together.

Image credit: B. Todd

Now, to be fair, a most individuals new to research have some pretty unrealistic ideas about what they can accomplish in a finite amount of time with limited resources and have an even vaguer understanding of what it is they actually want to do (beyond, “Change the World!”). So, a lot of the work mentors do is trying to get students to narrow down their ideas into something coherent and doable.

What does this have to do with science affinity? Let me tell you!

As a not-so-long-ago baby academic myself, I was faced with a conundrum. As a baby academics go, I had a leg up on many of my peers. I knew exactly which snack I wanted (maple donut, thank you), what the implications of that snack were (Hello, newer, roomier jeans [2]), and where I could find my snack. In fact, I’d been working on my project already before starting my PhD program. I wanted to investigate the impacts of the SPICE program on girls science identities. I was just missing one thing, a way to measure those impacts. Here’s the thing, though, academics measure things and academics create things-that-measure-things[3]. But baby academics really need to pick just one. So you can either 

Measure things and talk about what you measured 

OR 

Create a thing-that-measures-things and talk about how that thing you made that measures things works.

It’s pretty challenging to do both. You have to pick.

I still don’t get what this has to do with science affinity?

I’m getting there! I’m getting there!

So, I was really much more interested in measuring identity in SPICE girls than I was in creating a new fangled instrument to measure identity [4]. So what do you do if you want to measure something and you don’t have time to reinvent the ruler? Well, you do what everyone in my family does, raid mom’s tool box [5]. In this case, moms tool box is stuff made by other researchers. Fortunately, other researchers actually like it when you take their tools, unlike moms, who would like not to have all there stuff lost under a mountain of legos. 

Otters together. Cuteness squared.Image credit: B. Todd

Otters together. Cuteness squared.

Image credit: B. Todd

I knew I wanted to measure girls science identities. I knew I needed to do it with survey questions, and I knew that 11 year old girls have about a 2 page/30 question tolerance for filling out surveys. That’s under the BEST circumstances. So I went looking for what other researchers had done before. Nice juicy, validated instruments were what I needed. After trawling the depths of Google Scholar I found nine scale measures that seemed to mostly fit the bill. What I didn’t find, was a simple measure of science identity. Go figure! Identity might be something complex and not easily measured in a handful of ordinal scale questions [6].

So, I cobbled together parts of the nine scale measures I’d found and I snuck in a four question scale measure of identity I’d made up for a pilot study a year earlier (hello tiny eclair, I filched from the infinite snack table while my advisor wasn’t looking) and thus was born . . . well, a three page survey that was really boring.

BUT! I tested it with SPICE kids, and I ran some factor analyses [7] and thus a slightly less boring two page survey that made some sort of thematic sense emerged.

One snail, two snail. Brown snail, slime snail.Image credit: B. Todd

One snail, two snail. Brown snail, slime snail.

Image credit: B. Todd

This two page survey contained four clusters of questions. These clusters measured science identity (or something like science identity), expectancy value for science, science self-efficacy, and attitudes toward science. Now, constantly typing out those four things got rather boring for me so I needed to come up with a name that encapsulated the whole suite of measures . . . and voilà, science affinity was born.

Fortunately, though my process for getting to affinity was rather haphazard, it turns out that these four items actually share something in common. They all fall under the heading of motivational research, and that’s what I do. I measure motivation for science using an amalgam of motivational theories that I call science affinity.

So when I use the term science affinity in this blog what I mean is:

  • Do they think science is cool?

  • Do they think science is valuable?

  • Do they think they’re good at science?

  • Do they think of themselves as scientists?

And that’s about it. Science affinity. The homunculus maple bar-éclair that is my snack of choice. 

Of course, I wasn’t really satisfied with one mashed up snack, but I’ll talk about my qualitative research in other posts. Hello, Pumpkin pie-maple bar-éclair.

~~~~~

[1] I have many thoughts about this. 

[2] Only half joking. Grad school really can pack on the pounds. I went from a mean lean triathlon running machine to a strange goblin creature hiding in a corner closet cramming maples bars in to my face and rocking back and forth singing the theme song to Sponge Bob Squarepants.

[3] We call them instruments. They generally do not produce sound.

[4] I still totally want to do that and if you happen to know 400-600 girls ages 11-14 who don’t mind taking a bunch of surveys please call me.

[5] All the pink labeling tape in the world won’t keep my husband and son from 5-fingering my measuring tape and nice rubber handled pliers. GAH!

[6] What’s an ordinal scale question, you ask? Actually, you already know. You just don’t know that you know. It’s what is famously called an “unknown, known.” Which is to say, they’re those questions people call you on the phone to ask. “If you were to rate your interest in having a full service toe waxing station at your work would you say you are: very disinterested, disinterested, neither interested nor disinterested, interested, or very interested?” 

[7] That’s a mathematical way of finding out which of the items on your survey are the “cool kids” who want to hang out together. And which are the sad kids, who have to eat lunch alone.

A list of all the survey instruments I filched from other researchers.

Cause it’s only stealing if you don’t give credit!

Adams, W. K., Perkins, K. K., Podolefsky, N. S., Dubson, M., Finkelstein, N. D., & Wieman, C. E. (2006). New instrument for measuring student beliefs about physics and learning physics: The Colorado learning attitudes about science survey. Physical Review Special Topics-Physics Education Research, 2(1).

Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293-309.

Germann, P. J. (1988). Development of the attitude toward science in school assessment and its use to investigate the relationship between science achievement and attitude toward science in school. Journal of Research in Science Teaching, 25(8), 689-703.