Failure

I’m an old queen. Whatever you’re thinking that’s probably not it. In 2013 I competed in the annual Eugene SLUG Queen Competitionand won. I am Old Queen Professor Doctor Mildred Slugwak Dresselhaus[1], named in honor of the late great Queen of Carbon Nanonscience, Millie Dresselhaus[2]. It wasn’t my first time competing for the crown, you see, I tried in 2012 and I failed. We put up a valiant fight, bribing the old queens with the gift of SCIENCE! for the masses [3]. It was a close thing, but I was edged out by Queen Sadie Slimey Stitches and her Naughty Knitters. 

It’s not my defeat in 2012 that makes me cringe though. It’s what came after winning. SLUG Queens started out as a sort of kitschy joke, but sometime in the early aughts the queens upped the ante and started advocating for causes. It is now traditional for the Raining Queen [4] to hold a gala fundraiser for her chosen cause. I was the first (and so far only) Science Slug Queen and I was raising awareness and money for the SPICE program. For months I worked on beautiful posters, collecting donations, getting out word of mouth on social media, and planning a night full of fun science activities. The gala was lovely . . . and about 25 people came for a space designed to hold 200. Ouch! The only thing that save the event from taking a loss was the heroic MC work of Old Queen Bananita who cajoled and amused the few folks on hand to buy enough stuff from our auction to get us (barely) into the black.

I made lots of mistakes along the way to my very public face-plant. Just thinking about it makes my eyes go squinchy. I keep the lovely poster made by my friend and co-conspirator Pinky (aka Jen Weber) in my office as a reminder. Failure is never far away.

I am a motivational researcher. Understanding the impacts of failure is key to understanding all sorts of aspects of motivation (identity and self-efficacy being two big ones). I spend a lot of time proclaiming the value of failure in learning, but I’m gonna be straight with you, failing sucks. It’s no fun to take a risk and fall flat on your face. No one likes to feel incompetent or foolish, especially in front of witnesses. The desire to avoid this kind of embarrassment can lead to some pretty impressive avoidance strategies. Adolescents and youth in particular are keenly tuned in to the dangers of social embarrassment. Many pre-fossils like myself have any number of embarrassing stories we can trot out for amusement now that we are at a remove (and I do think being able to laugh at your own mistakes is a sign of maturity), but I bet most of us also have a few we do not care to share, even decades later (I know I do).

Science, by its very nature, is a process of failure. Failure is not merely an option in scientific inquiry, it’s a prerequisite to even the most humble success. Consider the scientific method:

Ask a question

(admit you don’t know something)

Investigate

(learn more, because you don’t know enough)

Hypothesize

(take a risk by making a guess)

Design

(try to figure out how to answer your question)

Test

(collect some data and hope it makes sense)

Analyze

(can you figure out what you did actually means?)

Share

(tell the world all the ways in which you were wrong, and if you are very lucky the one or few things you got kind of right)

Scientists become old friends with failure. More like frenemies who don not actually like each other and engage in a lot of one-upmanship. One of the ways scientist do this is by contextualizing failure and making room for it in the process. Scientists know they aren’t going to get everything right the first time, they build a learning curve into their experiments, reach out to experts for advice, and collaborate with people who have experience. They document their failures and try again, hopefully having learned something that will help with future attempts. 

The scientific community is actually experiencing a problem right now. There’s a heavy bias in the publishing of data only to report positive results. Negative results (aka failures) rarely make it into the literature which is resulting in duplication of effort and an incomplete picture of what is actually known. After all, if you’re trying an experiment, wouldn’t you like to know if someone else did it before and found it doesn’t work? Often, when learning new things there is value in repeating something that’s been done before, even if it doesn’t work. Just as often it’s just a big waste of your time. Why do that? But our fear of failure and collective bias toward success is creating a problem. 

Failure becomes particularly problematic for out-group members. If you read my Nerding While Female post, then you have heard at least a little of how women’s membership in male dominated identity groups such as sports fan, cultural geek, and science are often subject to heavy gatekeeping and policing. Any time an individual is not perceived as a natural member of a group this extra barrier to membership identity can be found. For in group members, failure is just a small set back. For outgroup members failure is yet another symbol of not belonging. Couple this with the fixed mindset that often manifests in out-group members seeking entry and stereotype threat (illustrated beautifully in this comic) and failure becomes a serious threat to integrating a science identity for anyone who does not fit the scientist stereotype.

There is hope though. There are ways to make failure into an ally.

First and foremost educators and mentors can help students contextualize failure. Often when students are first introduced to the scientific method they think the goal is the come up with the correct hypothesis and prove it. This can make science projects a crushing experience when they should be an exciting process of discovery. When teaching science fair projects through SPICE, we always emphasize that a hypothesis is just your best guess and that the point of the process is to learn something new. There is no “right” answer. Doing it right means being thoughtful, observant, and analytic. The most valuable thing any scientist can do is find and proudly share her mistakes and incorrect assumptions. Mature scientists spend far more time on the shortcomings of their work than on the successes [5]. Understanding what went wrong is so much more valuable than getting everything perfectly right the first time. 

Failure is only true failure if you didn’t learn anything. 

In SPICE we tell our girls that failure, is not only an option, but a prerequisite for any scientific endeavor. Perseverance, analysis, and a good sense of humor when it comes to your own mistakes are the most important skills for being a scientist. 

Use failure as a sharing opportunity. Whenever we carry out a complex of difficult experiment in SPICE I ask for volunteers who want to share their failures and what they learned from them. Hearing that others have flopped is a powerful learning experience. My favorite times are when students learn from the mistakes of others. Once at an engineering Saturday workshop a team shared how explained how they had tried something a little different with their structure that had not worked and another girl piped in, “I saw what they did and I thought it was really cool, but it wasn’t working. So I tried it with a different setup and it worked great. I would never have figured it out if I hadn’t seen their idea.” 

When you provide a space for sharing failure it helps others learn from your mistakes and creates a shared sense of what it means to be a learner who fails. Students who started out with hanging heads or frustrated glares are soon laughing at their peers stories and sharing their own face plants.

“I can tell you one, thing,” said one of the campers I interviewed. “I don’t know how to get that experiment to work, but I can tell you 5 ways it won’t!” And that is a beautiful thing.

***

[1] NOT former, darling. Once a Queen, ALWAYS a Queen. We’re all Old Queens here.

[2] Yes, I asked her permission before using the name and she was “tickled” by the idea.

[3] Bribery is traditional and I like to think I elevated it to a new level. We set up tables in the square and did free science activities will all the kids and families who attended.

[4] Nope, not a typo. Slugs love rain and it the Pacific Northwest after all.

[5] Though sometimes we can go overboard on the qualifications.

They didn’t even know they were doing science

Some of the best science educators I ever met were preschool teachers. Some of the most natural scientists I ever met, where a group of two year-olds. I learned more from those teachers and children about how to teach science than I did from my entire PhD program in education [1]. 

There’s a story I like to tell about how I was humbled by a group of toddlers. My son attended what my husband and I called the “hippy daycare.” This was a child development center attached to the University of Oregon where I am an employee, and at the time, my husband was a student. The daycare follows the Regio Emilia [2] philosophy of early childhood development.  What this means functionally is that the kids spend a lot of time working on long term projects, mostly art focused projects, based in children’s interests.  

The early upshot of this was lots and lots of brown paintings. It turns out, small children do not like to limit themselves to one color at a time on their brushes. I became very adept at discerning yellow-based browns from red-based browns from blue-based browns. One project I witnessed involved 8 crawling infants gleefully rummaging  through a full a three foot wide pile of semi-shredded paper. It made sense in context. 

One of the things that the teachers at my son’s school [3] would often lament was their lack of expertise in science. I heartily disagree. This is the story that I think best encapsulates just how good they were at science.

Image Credit: B. Todd

Image Credit: B. Todd


One morning as I was dropping off my son in the wobbler room (1 ½-2 ½ year-olds) another one of the children, I’ll call him Ned, brought a leave to one of the teachers. It had fallen off of a sort of succulent plant that had thick waxy leaves. He wanted to know if it could be put back on.

Now if Ned had brought the leaf to me, I would have kindly said that, “No, the leaf can’t go back on. But the plant will be OK. Let’s put this in the trash.” 

The teacher did not say that. The teacher said, “I don’t know, what do you think?”

In a matter of moments, Ned had the children circled up around the plant brainstorming. Kids being dropped off rapidly abandoned their parents to join the session. I stood back and watched, intrigued. Each child offered a suggestion. After several had been offered the teacher had the children assess each suggestion. My son, who was at the time obsessed with construction and a plastic toy hammer he used on EVERYTHING, helpfully suggested, “AMMA! AMMA!”

“What do we think about hammering the leaf on?”

After a brief scrunch faced moment, he agreed that maybe hammering the tree would not be a good idea and joined the growing contingent in favor of taping the leave back on to the tree. 

Mind you, these kids were mostly under two years old and didn’t have many words, but they had some sign language and a long history together. The communication was surprisingly effective and the teachers never gave answers, always putting it back to the kids to problem solve and decide on a course of action.

Over the course of three days the children tried multiple types of tape, glue, and putty. They rummaged through the classroom supplies to find potential adhesives, worked together to get the leaf back on the plant stalk, and then waited to observe each attempt. Checking in multiple times daily to see if there was any progress. Near the end of the third day they circled up again. Out of tape and glue, the teachers asked the children what they wanted to do next. Ned took the leaf, stuck it into the soil in the pot and returned to the group. “What do we think about putting the leaf in the dirt?”  With a collective shrug and a few words the group agreed that it was, “good enough.”

Let me break this down, science style. 

1)   Generate a question – How can we put the leaf back on the plant?

2)   Investigate – The children examined the leaf, the plant, and the resources at hand.

3)   Hypothesize – Attaching the leaf back to the plant might permit the leaf to continue to live and grow.

4)   Plan – The children brains-stormed techniques and selected a set of approaches to test (glue and tape)

5)   Test – They tried each approach in succession and collected data

6)   Analyze – They looked at the results, determined that their approaches had failed and developed an alternative.

7)   Share – Teachers and students took photographs, made drawings, and added the story to their journey books.

A perfect science project, complete with failure and revision! Instead of simply being told the leaf was dead, they designed, tested, and confirmed that there was no available method for reattaching it to the plant. I really can’t think of a more elegant experiment or learning device.

The teachers led this activity with care and thought. Instead of rushing in and giving answers, they gave their students tools and prompts to help them through a largely self-guided inquiry. The kids weren’t left wondering why the leaf had to be discarded. They proved empirically that there was no method at hand for saving it. This experiment had ripple effects in the room. The children took more care with the plants, but also were pragmatic when leaves occasionally fell off. Eventually, after the leaf shriveled up in the pot, they took it out and discarded it. They knew from observation, however, that the plant would be OK if it lost a few leaves. 

I love this story. Over the years he was there, my sons teachers often asked me to visit the room to present science activities. I was happy to do it when time permitted. After all, I had access to microscopes and a few other cool instruments they didn’t have in the classroom. When I would visit, they would often lament that they weren’t more competent at leading science and every time, I laughed and assured them, they were setting their students up perfectly to be little scientists. 

After working with my son and his classmates during his preschool years, I’ve come to the conclusion that very young children are natural scientists. They ask questions about everything and rarely accept easy answers. They want to see, smell, touch, and hear WHY the world works the way it does and are only satisfied when they can try things themselves [4]. They are surprisingly, delightfully, skeptical when it comes to natural phenomena. As they learn new things they start making connections to their lives and seek out more information. Though it is true, sometimes they just want to run around and shriek a lot.

There was a dark side to this discovery for me. We know from research, and I’ve seen it myself, by the time these children hit middle school, their attitudes toward science have typically changed dramatically. While they all enjoy a good science show with fire and fizzy chemicals, very few of them enjoy science class or look forward to learning science. The interest drop in STEM at this age is dramatic and disturbing. Not just because we aren’t doing enough to foster a love of science in children, but because along the way, we are actively removingtheir natural joy and facility for scientific investigation. Thatis a sobering thought.

*****

[1] To be fair my grad program wasn’t tryingto teach us how to teach anything. They were making us into researchers, primarily quantitative researchers.

[2] You’ve probably heard of Waldorf and Montessori, well Regio Emilia is the Luke Hemsworth of early childhood ed. Talented and handsome, but less famous than Chris and Liam.

[3] We never really called it “daycare” because it didn’t seem like just place to house kids during the day. It was a place of learning.

[4] Not great when you’re trying to keep them from touching hot/sharp things, but excellent for learning.

Growing the Gap

There’s plenty of evidence that k-5 children (boys and girls, white and minority) have a pretty strong interest in science and are confident in their science abilities. We also know that STEM careers tend to be dominated by white men. So what is happening in the tween to adult years that results in the gender STEM gap? Well, a lot. 

Ignoring the simplistic, and thoroughly debunked answer that girls just don’t like science, there isn’t just one answer to this question. There are many answers that when stacked together paint a rich portrait. While not all explanations apply to all girls, the layers and layers of small barriers and messages form what J Clark Blickenstaff calls the gender filter

There are so many layers to this filter that I cannot possibly cover them in one blog post (or many, many blog posts). I’m an identity researcher, so I’m going to focus on explanations around identity. Also, because I think that understanding these elements is the key to correcting the gender gap in STEM.

Even though young children express enthusiasm for science and confidence in their science abilities, gendered inculturation into science and math is already at play as early as second grade in the form of implicit bias and gendered associations [1]. Very young children have already absorbed stereotypes about who is more suited to careers in math (and science) and who is “better” at math and science. These early perceptions of suitability play a pivotal role in later decisions.

As I’ve mentioned before, middle school is a very important time for identity development. Kids begin trying out different identities, processing feedback about their identity performances, and making important choices about who they are, and perhaps more importantly, who they are not or cannot be. This is also a crucial time for establishing gender identity, testing out sexuality, and finding social niches. I think most people who’ve been through middle school can remember this time pretty vividly. The pressure to find a place of belonging and avoid social shaming is powerful. When you add to the mix gendered notions of science as being the native realm of (white, cis, hetero, upper middle class) boys - and unflattering stereotypes of scientists as asocial, obsessive, geniuses - a female science identity becomes quite fraught. For most girls, trying on a science identity is a risky proposition that could undermine a more socially desirable identity as feminine and sociable. 

11-Gap sm.png

In their hugely influential studies of tween and teen youth, science identity ninjas Archer and Dewitt [2] have described the very circumscribed path toward a female science identity. Basically, girls have two choices in successfully integrating a science identity, neither of which is reasonably attainable by most girls. The first example is the well-rounded, socially adept girl. This is the girl who can do it all, sports, academics, social-status. You know this girl. She’s the one you desperately wanted to hate in high school, but you couldn’t, because she was just so nice and awesome, and her hair was super shiny and always looked great - but like she didn’t even try, she just rolled out of bed fabulous without any makeup and could spike a volley ball like some sort of Grecian goddess. She could be a cheerleader and captain of the brain bowl team. She built houses for poor people in Honduras, where she spoke flawless Spanish. Dammit Alicia O’Brien [3], you haunt me.

So yeah, that’s not an option for any but the .01% of Alicia O’Briens in the world. The other option Archer and Dewitt observed where what is known in the UK as “blue-stocking” scientists. These are girls who strongly identify with academic pursuits and have largely desexualized themselves. They typically have parents who take a strong hand in the daughters education and discourage the normal socializing and gender goofing off of early adolescence. You know this girl to, she’s serious, hard-working,  intellectually intimidating, but not socially threatening. She’s above the game. This identity is also not terribly accessible (or desirable) for many girls. 

Imagine, you are a middle school aged girl. You’ve already absorbed the implicit bias that science and math are the natural realm of boys. You probably think (though you may not admit it) that being good at math and science requires an innate talent (see fixed mindsets). Even if you are pretty good at math and science your performance in those areas doesn’t impact your interest in them as much as it would for boys, because most careers in math and science are not really “thinkable” for a girl. So, when you’re choosing extracurricular activities, you’re less likely to choose math and science options that conflict with your feminine (or non-binary) gender identity. Even if you’re an academically high performing student, you view math and science instrumentally, as hurdles to climb to get where you want, rather than interesting journeys to take just for the wonder. Over time these small biases and little choices feed into growing identity gaps and a future in science seems less and less like “you” as other things (art, sports, social ties) become more integrated into your sense of self.

In this way, the narrative around choices about science and identity get muddled and feel less like a narrative of oppression and exclusion and more like a natural arc. These choices away from science and toward something else were simply the journey to being who you always were. Sure, you liked science as a kid and you enjoy a good podcast about developing a missions to Mars, but science is not a part of who you are

I like to tell a story about when my son was very little. Between the ages of 2-4 my son had a plan, and it was the best plan ever. When he grew up he would spend his days as a construction worker using massive equipment to tear down roads and buildings and then build other roads and buildings. By night he would be a janitor, cleaning up all the grossest messes of the world and vacuuming up all the spiders. In between he would sneak in princess time, art, and legos. He had all the accoutrement for these vocations. Big dump truck and excavator with real moving arms. Check. Janitor cart with feather duster, spray bottle, and working mini vacuum. Check. Art supplies and Legos. Check. Closet full of mermaid princess costumes. Check.

In the mind of a three year old, there are no limitations. You can literally be anything you want and you can be as many things as you want. Researchers, parents, and teachers, spend a lot of time and effort talking about adolescence, what it is, what it means, what’s happening. For me, the biggest discovery of adolescence - I mean, big flashing 50 foot tall sign type of discovery - is scarcity. This is the time when you realize, “Oh wait, I can’t be a cowboy, ballerina, astronaut, president. I’ve got to narrow this sh!t WAAAY down.” The world suddenly becomes very big and very small all at once. There’s an infinite array of choices, but you’ve got to pick and you’ve got to pick while walking a tight rope balancing 5 plates with a weasel crawling around in your hoodie. So just like hiring managers pouring through massive piles of resumes, you start looking for quick and easy disqualifiers [2]. There’s a typo on this resume. Trash. This person doesn’t have a degree. Trash. There are very few girls scientists. Trash. Science is for boys. Trash. I’d have to give up a lot to be a girl scientist. Trash.

So . . . is there nothing we can do? Is this just a viscous cycle of inescapable socialization? Not at all! There are some really great rays of hope. After all, lots of girls (not half, but still a good chunk) do choose science and there things we can do to help more girls view science as “thinkable.”

Leaping the Gender STEM ChasmImage Credit: P. Kim

Leaping the Gender STEM Chasm

Image Credit: P. Kim

Bucking the Trend

Among girls and women who identity with scientists, two common themes emerge in their narratives of how they came to love science: mentors and peers. 

Opening Up the World of Science

Every girl I have ever spoken to who identifies with science talks about a teacher [3]. They talk about teachers who brought so much enthusiasm and passion to science that their love for the subject was infectious. They talk about projects and activities that encourage creativity and centered on investigation. They describe instruction that enables students to see themselves as agentic beings in the world of science.

“He made science feel so fun it didn't really feel like the science that we

used to do.”

“Well, she's just fun! I mean, she won't let you off if you don't finish your homework, [but] she just finds a way to make everything interesting.”

In their excellent 2014 paper, Carlone, Scott & Lowder juxtapose two different classrooms. In the classroom of 4th grade teacher Ms. Wolfe the idea of what makes someone good at science is broadened to include creativity, supporting the learning of peers, and asking interesting questions. In Ms. Wolfe’s classroom the “celebrated figure” of the scientist was constructed much more inclusively than the fuzzy haired old white dude of stereotypes. Children had many venues to develop their own style and approach to building a science identity. None of which were centered on getting the “right answer.” A diverse array of children in Ms. Wolfe’s class identified as being good scientists. Each had his/her own way of being a good scientist that was personal and included their own intellectual and social strengths. Enthusiasm for the subject was high among her students.

Two years later, the same students were in the classroom of Mr. Campbell which was structured around the traditional ideas of completing worksheets and getting right answers. Knowledge in this classroom was passed from the teacher to the students and questions were for clarification, not creativity or curiosity. Gendered ideas about science were prevalent in the classroom. It was clear that Mr. Campbell, while thought of as a nice and “fun” teacher, was rooted in traditional ideas of what it takes to be a good scientist (compliant, perfect, organized). There was a notable dip in enthusiasm for science in Mr. Campbells class and a much narrower field of students who identified (and were identified by peers) as scientists.

How teachers approach the idea of the scientists and the role of students in their science education can make a difference in students identity development. I’ve said it before, and I’ll keep saying it long after everyone just rolls their eyes and says, “I know, mom/Dr. Todd, I know!” Welcoming all children into the world of science and supporting the adoption of science identities is as, if not more important, than the content we teach them. 

Peers: Push and Pull

Another theme I’ve observed in the literature and from my own research is the presence of science-engaged female peers. Girls who unabashedly enjoy science and pursue it with vigor have peers and friends who share their interest. Having a group of friends to “nerd out” with and do experiments with is a way to overcome the gender STEM thinkability gap. The girls with the most positive outlooks about their future as scientists, in my research, are the ones who talk about doing science experiments at home with friends. They talk about taking apart electronics picked up at thrift stores, weekends spent wrecking the kitchen doing chemical reactions, and doing school science projects together.

Outside-of-school time with peers also appears as a theme in developing science identities. Tan and colleagues (2013) document an instance of one girls journey from a disengaged science student, to a fully-fledged science identity through an after school environmental science club. Kay, found a voice, and the respect of peers through the informal science club where she used her social skills and drive to become a science leader.

 Peers can just as easily pull girls away from science. Tan and colleagues also found that jumping into more difficult science classes had social costs for minority girls who found themselves as one of the only non-white students in their classrooms and also due to scheduling conflicts, no longer shared classes or lunch time with their longtime friends. The pull to remain with fellow minority peers who understood their history and personality was strong for girls in this position. Many girls may feel a loss of connection with friends who do not share their interest in science, while boys will be much more likely to find relatable peers in the science milieu.

Concluding Thoughts

For girls who find passionate, inviting science teachers and peers who share their interest, science can be a wonderful playground of discovery and integrate into an enduring identity. Of course, finding those teachers and peers is the trick no, isn't it?

In my own research, however, I have found that just one teacher who welcomes girls into the world of science can make a huge difference, especially when girls can maintain contact with that teacher. Some do this by volunteering in their old classrooms and through clubs and special projects. 

Parents can also play a role in helping girls build science engaged peer groups. More than a few girls I’ve known have “tricked” their friends into enjoying science with the help of parents. Families who have the time and resources to invite friends along to science outings (nature hikes, museum visits) can help foster interest in their daughters peers. Some parents go above and beyond, providing girls with fun weekend science activities, often bringing in elements of creativity that appeal science and non-science oriented children. I’ve known parents to weave arts and crafts and baking into lessons on chemical reactions, reflected light, and botany. It can be a tall order, especially for parents who themselves feel intimidated by science, but even an occasional small activity in which girls are free to explore the scientific world, outside of school, among friends, can be a powerful bonding experience.

~~~~~

[1] Yes, Alicia is real. No that’s not her name. Yes, she really was just the nicest person ever.

[2] Yes, I like metaphors. It’s not technically mixing metaphors if just serially stack them on top of one another.

[3] In a sad corollary, I have also heard plenty of tales from girls about how a teacher has damaged her connection to science or a particular discipline.

~~~~~

Archer, L., et al. (2013). "'Not girly, not sexy, not glamorous': primary school girls' and parents' constructions of science aspirations." Pedagogy, Culture & Society 21(1): 171-194.

Blickenstaff, J. C. (2005). "Women and science careers: Leaky pipeline or gender filter?" Gender and Education 17(4): 369-386.

Carlone, H. B., et al. (2014). "Becoming (less) scientific: A longitudinal study of students’ identity work from elementary to middle school science." Journal of Research in Science Teaching 51(7): 836-869.

Cvencek, D., et al. (2011). "Math-gender stereotypes in elementary school children." Child Development 82(3): 766-779.

Todd, B. (2015). Little Scientists: Identity, Self-Efficacy, and Attitudes Toward Science in a Girls' Science Camp. Educational Methodology, Policy, and Leadership. Eugene, OR, University of Oregon. PhD: 313.

Nerding While Female

I am a dork. A dweeb. A nerd. A geek. Have been since it back in the day when those were insults. I’ve got nerd cred a mile wide and Everest deep. I learned Basic on an IBM clone in the 80s. I owned pirated VHS copies of Explorers, War Games, Short Circuit, and The Last Starfighter. I listened to They Might Be Giants. I’m an old school platformer with mad skills and I can tell you where all the hidden passages, power ups and secret endings are in Super Mario Brothers from the first NES game through Mario 64 and beyond (Including the Lost Levels -  released as Super Mario Bros 2 in Japan). I demolish my comic book reading, old school D&D playing husband at online tests of Geek knowledge. 

Nerd and geek culture have historically been closely associated with an interest in science. Not every nerd is a science person and not every science person is a nerd, but there’s a pretty long history between the two. For girls and women like me, nerd-dom and science share a pretty key problem – gatekeeping and credential checking.

I’m a science educator, I run science outreach programs. While most of my time is spent on higher level matters, I get plenty of time on the ground directly doing science with kids. One of the things I do each year is recruiting for our programs. This involves visiting local schools to give quick flashy demonstrations, teach a little science, and plug our programs. When I go on trips, I make sure to play the part. I wear the lab coat, the goggles, and gloves. I also wear t-shirts from shows and games I enjoy and know kids will recognize.  Many kids compliment my choices. Well, girls do. Boys are another matter.

Uncannily, and without fail, at the end of my demo, or even sometimes during, a male student between the ages of 11-14 will interrogate my knowledge of the icon I’m wearing. 

“Do you reallyplay Fallout?”

“Which one is Fineas and which one is Ferb?”

“Do you know who all of those Nicktoons on your shirt actually are?”

Yes. Ferb has the green hair. Rug rats, Angry Beavers, Hey Arnold, CatDog, Aah! Real Monsters, and Rockos Modern Life – all of which, I might add were on the air before you were born.

One kid actually grilled me on all the Easter eggs in the intro sequence to Gravity Falls. I played my Gravity Falls ringtone for him.

They’re not really challenging my knowledge of a particular property, they’re challenging my right to be in “their” sphere. The fact that girls and women make up a huge component (and often the majority) of fandoms does not dissuade these little gatekeepers from demanding my credentials at the door.

Image Credit: B Todd

Image Credit: B Todd

Now you could argue that their suspicion comes from my adult status, rather than my gender, but it doesn’t. I know because male instructors who wear similar apparel just get compliments or asked about their favorite parts of property x [1]. 

It’s kind of cute, at first, watching them try to play it cool when I unleash the tsunami of useless pop culture information I’ve collected over 4 decades, but after a while it gets really tiring. After a while, it stops being cute. It’s just another collection of microaggressions

There’s a sad and sour absurdism to the fact that our culture anoints even preadolescent males to police the identities of women old enough to be their mothers or even grandmothers. Women experience this in many spheres, pop culture and science, but also sports and technology.

If a man wears the jersey of a sports team, he is presumed to be a fan. If a woman wears it, she is presumed to be on the bandwagon with a male in her life who is a fan and will be subjected to inquiries about whether she is a “real” fan. Women will also be held to higher standards for being able to claim fandom. 

The same goes for science. Boys and men who express an interest in science or actively pursue science education and careers are presumed to have 1) genuine interest, 2) be competent unless they demonstrate otherwise, and 3) are accepted in their choices. Women who express interest in science or actively pursue science education and careers are more likely to 1) have their interest questioned, 2) be presumed to be less competent, and 3) be treated warily by in group members

Women in STEM disciplines report being asked to prove their competence and credentials over and over again. In a truly comic instance, transgendered neuroscientist Ben Barres reported overhearing some of his colleagues commenting that his work had always been “better than his sisters.” Professor Barres, who transitioned only a few years earlier had no sister in neuroscience.

The problem of “the poser” is hardly new. It is often cloaked in a search for “authenticity” to make sure that casual other don’t “pollute” a pristine space for those who genuinely “belong,” but really it’s plain old exclusion. This becomes rather obvious when you look at who is challenged and who is not.

I’m a grown woman with a PhD and a lot of experience dealing with exclusion both personally and from research and teaching perspective and I can confirm, it’s exhausting and demoralizing. It’s also difficult to challenge in the moment. Sure, I can prove my bona fides, but I shouldn’t have to. What else should I say, though? “Hey tiny male human, it’s cute that you think you get to decide if I’m nerd enough, but you’re just being a tool of patriarchy.” I’m not sure that would be effective. Sometimes I turn it back on them. “Yes, I do like such and such. What do you like about it? What is your favorite character?” Honestly, they usually don’t catch what I’ve done, but I’m an older woman in a position of authority. I remember being younger and feeling like I had to prove myself. Let’s face it, as women, we often we dohave to prove ourselves. Opportunities and evaluations may depend on men approving of us and the deck is stacked. Even when we’re not dealing with an potential authority figure, we’re conditioned from an early age to be compliant and polite. When we push back we’re “abrasive” and “pushy” or for girls, the dreaded “bossy.”

I’ve spent a lot of time thinking about how to help girls push back, and there are some tactics, but 1) it’s not reasonable to expect adolescents to suavely push back in situations that fluster grown adults 2) as I’ve mentioned before the notion that “fixing the girls” as a solution is just wrong

What we really need is to be collectively working on the gatekeepers, pushing  back against double standards of competence and belonging, training our sons to interrogate their own notions of what “belongs” to boys and boys alone, and recognizing that very little in life is a zero sum game. Including more girls and women in the world of STEM is not taking something away from the boys and men, it’s giving everyone more. More creativity, more collaboration, allies.

 ~~~~~~~

So how does one deal with microagression theater? There’s no perfect answer, but here are some tips I’ve found helpful.

One tactic I advocate for is using L'esprit de l'escalier. This is French term, meaning the “wit of the staircase.” It’s when you think of a snappy comeback right after it’s too late. The thing is, the rude, stupid, and exclusionary things people do and say follow themes. Start paying attention and you’ll notice these themes. Spend a little time thinking of how you want to handle them the next time and give it a try. See what happens, refine you technique. Carry note cards (Nothing cools some ones jets like waiting for you to pull a notecard out of your bag and then reading it to them). Read or simply state your prepared response, and the, this part is important, stop talking. Resist the urge to qualify, or joke, or lighten the verbal punch. Just let it sit in the silence. It can be quite therapeutic to watch the verbal salad that starts spewing out of people when you calmly and flatly call out their rudeness and dump it in their laps.

I like the notecard bit because it really drives home how unoriginal the aggression is. If there’s a prepared crard, it’s clearly not new to you.

 Here are some sample texts you can use: 

“That was very rude.

“That is inappropriate.”

“Are you really interested in my answer? Because it sounds like you just want me to agree with you/shut up/accept your ludicrous premise.”

“Why do you ask?”

“I’m sorry, could you repeat that . . . Nope, still didn’t get it. I thought you said, X, but that would be very rude. What did you say?”

“Yeah, I know.”

“Awkward”

“I’m not going to answer that.”

“I’m so sorry. This must be very embarrassing for you.”

“I’ll give you a moment to get your foot out of your mouth.”

~~~~~

[1] Poetically, the only shirt I wear that I don’t actually have a personal connection with is a kawaii-style figure called Pusheen. I had no idea who Pusheen was when I bought the shirt, but I thought it looked cute and I needed a third shirt for the buy 2 get one free deal. No one has ever questioned my right to wear Pusheen, as kawaii is traditionally the realm of women and girls.

Future Posts

So, I got pneumonia in December and am looking forward to breathing again sometime in March. For a corrected list of future posts, see this updated post.

We’ve got lots of content to cover in the next six months. Here is a list of upcoming posts with dates.

December 6th - Growing the Gap

Why girls participant in STEM gets lower as they get older.

December 13th - They didn’t even know they were doing science

A story about the best science teachers and science students I’ve ever met. I guarantee it’s not what you’re thinking.

December 20th - Failure

Make a friend out of everyone’s worst enemy and reclaim the F-word.

December 27th - Don’t Reinvent the Wheel

Practical tips for doing science outreach

January 3rd - “Real Science” vs School Science

What kids think about the science they learn and the science they want to do

January 10th - Mindsets

An overview of Dweck’s research into how we thing about our own learning potential

January 17th - Self-Segregation: Only Girl in the Room

How stereotypes about science keep girls from joining in

January 24th - Logic Model!

An overview of how SPICE takes theory and puts it into practice

January 31st - Understanding obstacles to engaging with and enjoying science

Why your daughter doesn’t want to go to robotics club

February 7th - Science Identity Archetypes

Overview of original research on how girls think about scientists and their own ways of doing science from the SPICE Program

February 14th - Archetypes: Experts

How high achieving girls relate to science and how formal classrooms alienate them

February 21 - Archetypes: Inventors

Girls just want to have science that does good and makes cool stuff

February 28th Archetypes: Experimenters

Science as intrepid exploration

March 7 - Self-Efficacy and the Role of Social Persuasion

Role models and feedback in science

March 14th - Combating Instrumentalism

The importance of learning to love science as science and not just a tool

March 21 - Self-Efficacy - Vicarious Learning

Shared learning and peer-modeling

March 28 - Don’t hand out the supplies!

Practical tips for implementing science outreach with young children

April 4th - Why Can’t I Just Do Some Science With Kids?

The trap of expertise in teaching science to non-experts

April 11th - Self-Efficacy and Mastery Experiences

The best way to feel good about your ability to do the thing is to DO THE THING!

April 18th - Finding Opportunities and Framing Science

How to find opportunities for science engagement for your children/students

April 25th - Intersectionality

It’s not just gender. A wide range of factors influence kids choices around science

May 2nd - What can you say about your outreach at the end of the day?

How to evaluate your outreach efforts in a meaningful way without going insane.

May 9th - Figured worlds and celebrated subject positions

Creating a landscape that welcomes diverse students to the world of STEM

May 16th - So, you’ve got and gotten yourself involved in a science education controversy!

Learn how not to do what I did and how to handle criticism

May 23 - Making Opportunities

How to create opportunities for your kids/students to engage with science